
B
iS

S
-C

 F
irm

w
ar

e
P

R
U

-I
C

S
S

SLO

MA

AM437x IDK
RS485 Transceiver

VCC

CLK-

CLK+

Data-

Data+

GND

B
IS

S
-C

 E
nc

od
er

VCC

CLK-

CLK+

Data-

Data+

GND

1TIDU794A–March 2015–Revised February 2016
Submit Documentation Feedback

Copyright © 2015–2016, Texas Instruments Incorporated

BiSS-C Interface Master Design Guide

TI Designs
BiSS-C Interface Master Design Guide

EtherNet/IP is a trademark of ODVA, Inc.
Sitara, Code Composer Studio are trademarks of Texas Instruments.
ARM, Cortex are registered trademarks of ARM Limited.
EtherCAT is a registered trademark of Beckhoff Automation GmH, Germany.
ETHERNET POWERLINK is a trademark of Bernecker + Rainer Industrie-ElektronikGes.m.b.H.
EnDat is a trademark of Dr. Johannes Heidenhain GmbH.
Microsoft Visual Studio, Windows are registered trademarks of Microsoft Inc.
PROFINET, PROFIBUS are registered trademarks of PROFIBUS and PROFINET International (PI).
Sercos is a trademark of Sercos International.
All other trademarks are the property of their respective owners.

TI Designs
TI Designs provide the foundation that you need
including methodology, testing and design files to
quickly evaluate and customize the system. TI Designs
help you accelerate your time to market.

Design Resources

TIDEP0022 TI Design Files
AM437x Product Folder
TMDXIDK437x Product Folder
SN65HVD78D Product Folder

ASK Our E2E Experts
WEBENCH® Calculator Tools

Design Features
• Offers a BiSS-C Interface Master For Point-To-

Point Communication Running on PRU-ICSS
• Offers an Interface Speed of 1, 2, 5, and 10 MHz
• Offers an 8× Oversampled Input Capture
• Offers a Control Communication Interface
• Offers Line-Delay Compensation With Filtered-

Sample Point
• Offers a Debouncing Filter on Oversampled Input
• Supports up to 100-m Cable
• Runs on AM437x With PRU-ICSS

Featured Applications
• Factory Automation and Process Control
• Sensors and Field Transmitters
• Motor Drives
• Position Control

An IMPORTANT NOTICE at the end of this TI reference design addresses authorized use, intellectual property matters and other
important disclaimers and information.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU794A
http://www.ti.com/tool/TIDEP0022
http://www.ti.com/product/AM4379
http://www.ti.com/tool/tmdxidk437x
http://www.ti.com/product/sn65hvd78
http://e2e.ti.com
http://e2e.ti.com/
http://e2e.ti.com/support/development_tools/webench_design_center/default.aspx

B
iS

S
-C

 F
ir
m

w
a

re

P
R

U
-I

C
S

S

SLO

MA

AM437x

IDK

RS485 Transceiver
VCC

CLK-

CLK+

Data-

Data+

GND

B
IS

S
-C

 E
n

c
o

d
e

r
VCC

CLK-

CLK+

Data-

Data+

GND

Introduction www.ti.com

2 TIDU794A–March 2015–Revised February 2016
Submit Documentation Feedback

Copyright © 2015–2016, Texas Instruments Incorporated

BiSS-C Interface Master Design Guide

1 Introduction
This design implements the BiSS-C interface master on the TI Sitara™ AM437x Industrial Development
Kit (IDK).

BiSS is an open-source digital interface for sensors and actuators. BiSS stands for bidirectional serial
synchronous. The BiSS interface was introduced by iC-Haus GmbH as an open-source protocol in 2002.
This hardware is compatible with the industrial-standard serial synchronous interface (SSI) and uses two
unidirectional lines for the clock and data, respectively.

BiSS-C mode is the continuous mode in which the BiSS-C interface master reads out the position data
cyclically. Control communication is available for the master to send commands to the slaves and to read
and write the slave local registers.

The BiSS interface is used in position-control applications. The interface enables a complete closed-loop
position control system by providing the real-time position feedback to the master to control the motor.

The existing solutions on the market are based on Field Programmable Gate Arrays (FPGAs) and
Application Specific Integrated Circuits (ASICs). The implementation within this document provides an
integrated solution that implements the BiSS-C interface master using programmable real-time unit on an
industrial communication subsystem (PRU-ICSS).

2 System Overview
The position-feedback system is a position encoder attached to a motor with a cable up to 100 meters
long. The cable provides power and serial communication and the master interface to the position
encoder. For the Sitara AM437x processor, the master interface for position encoder is a function of a
connected-drive controller. The AM437x provides the resources for industrial Ethernet and a motor-control
application including on-chip analog-to-digital converters (ADCs) for measuring the current. The BiSS-C
interface master on the Sitara AM437x processor uses one of four programmable real-time units (PRUs).
The firmware is developed on the 32-bit RISC processor using register-mapped I/Os.

This design of the BiSS-C interface master interfaces the BiSS-C position encoder with a BiSS-C digital
interface. This interface enables the simultaneous transmission of position data and the control data
through the same wire. The SN65HVD78D RS485 transceiver interfaces the BiSS-C position encoder with
the BiSS-C interface master.

Figure 1 shows the overview of the BiSS position feedback system. AM437x IDK with an onboard RS-485
transceiver is used for this design. The supply voltage for the encoder is available on the M12 connector.

Figure 1. System Block Diagram

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU794A

ACK SB CDS MSB LSB nE nW MSB LSB

CDM

Position
data

CRC Time out

MA

SLO

www.ti.com System Overview

3TIDU794A–March 2015–Revised February 2016
Submit Documentation Feedback

Copyright © 2015–2016, Texas Instruments Incorporated

BiSS-C Interface Master Design Guide

2.1 BiSS Protocol
BiSS-C allows the simultaneous transmission of position data and the control data over the same line.
BiSS-C is hardware compatible with the SSI.

Though position encoders typically provide the feedback-position data of motors, this encoder allows
closed-loop control of motors. This design implements the BiSS-C interface master for point-to-point
communication.

Figure 2 shows a BiSS frame in point-to-point communication.

Figure 2. BiSS Frame

In the reset state, the master clock (MA) and slave data out (SLO) lines are active high. The BiSS master
interface starts sending the clock over the MA line; on the second rising edge of the MA clock, the slave
responds with a low signal, which is an acknowledge signal (ACK) of BiSS frame. For the next MA clock
cycle, a start bit (SB) is asserted by the slave. Following the SB, the slave sends a control data slave
(CDS) bit, which is the response of the control data master (CDM) bit. The CDM bit is the inverted state of
the MA line during the BiSS time-out.

After the CDS bit, the slave sends the position data with the most significant bits (MSBs), followed by an
error bit (nE) and a warning bit (nW). The slave sends the cyclic redundancy check (CRC) bits with MSB
first. The CRC is sent inverted by the slave over the SLO line.

When the slave finishes sending all the bits, the slave goes to the BiSS time-out state driving SLO to a
low signal level. The slave goes to high when it is ready for the next transmission or expiration of the BiSS
time-out. The inverted state of the MA clock line during the BiSS time-out is the CDM bit for control
communication. One control data bit is sent in each BiSS frame by the master. The slave responds with
one CDS bit in each BiSS frame.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU794A

CDMMA

ACK SB CDS MSB LSB nE nW MSB LSBSLO

Processing
Time Request

Time out

CDM
MA @
Master

ACK SB CDS MSB LSB nE nW MSB LSB

CDM
MA @
Slave

SLO @
Slave

ACK SB CDS MSB LSB nE nW MSB LSB

SLO @
Master

Line delay

Time out

Time out

MSB

System Overview www.ti.com

4 TIDU794A–March 2015–Revised February 2016
Submit Documentation Feedback

Copyright © 2015–2016, Texas Instruments Incorporated

BiSS-C Interface Master Design Guide

2.1.1 Line-Delay Compensation
In a real-world application environment, the encoder can be far from the BiSS-C interface master. A long-
cable connection between the encoder and the BiSS-C interface master can delay transmission and
physical noises.

Line delay is the delay due to the cable lengths in the BiSS-C transmission. When the BiSS-C interface
master starts sending the clock, extra time is required for data to reach the encoder. When the slave
receives the clock, it responds with slave data. The slave response also travels the reverse path to the
BiSS-C interface master through the cable. The time delay in the transmission of data over the wire is
proportional to the length of the cable. With a cable length up to 100 meters, a cable delay of 1 µs from
the time the master sends the clock until it receives the slave response is possible.

The BiSS-C interface master has mechanism to compensate for line delay and avoid errors in the
transmission of longer cables.

Figure 3. Line-Delay Compensation

Figure 3 shows the signals in two perspectives. The MA @ Master line shows how the clock looks at the
BiSS-C interface master. Due to the line delay, the clock signal is delayed at the slave. The MA @ Slave
line shows the delay. The slave responds to the second rising edge of delayed MA clock. The SLO @
Slave line shows the response of the slave to MA @ Slave. The response takes some time to travel to the
master. Traveling to the master is also delayed as shown in the SLO @ Master signal. By measuring the
time duration between second rising edge of the MA clock and the first falling edge of the SLO line, the
total time delayed can be calculated. To avoid the transmission errors, BiSS-C master compensates for
this line delay.

2.1.2 Processing Time Request by Slave
A slave can request processing time before sending its sensor data when it requires additional time. Extra
time is required for operations like analog-to-digital conversion and memory access. The slave indicates
the processing time by delaying the SB. The master must check whether slave is requesting processing
time and provide additional clock cycles.

Figure 4 shows how the slave requests processing time by delaying the SB. If there is request for process
time, the ACK bit is low for more than one BiSS clock cycle. Because this consumes extra clock cycles,
the BiSS-C interface master must provide extra clock cycles to the slave.

Figure 4. Processing a Time Request by Slave

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU794A

ID2..0S CTS CRC3..0 RCDM >=14x

IDL0..7CDS

Cycle

ADR6..0 W S DATA7..0 CRC3..0 P S

S

P

PCRC3..0DATA7..0SWR

IDS0..7S CTS CMD1..0 CRC3..0 S EX8 CyclesCDM >=14x

IDL0..7CDS IDA0..7

Cycle

www.ti.com System Overview

5TIDU794A–March 2015–Revised February 2016
Submit Documentation Feedback

Copyright © 2015–2016, Texas Instruments Incorporated

BiSS-C Interface Master Design Guide

2.1.3 Control Communication
This document describes some important concepts of the control communication. For more information on
control communication, see www.biss-interface.com.

In BiSS-C communication, the master can send control data over the same line without interrupting the
position-data communication. The master sends one control data bit per BiSS frame and the slave
responds to these control data bits with one CDS per BiSS frame.

The control frame is for reading and writing to the slave registers. CRC also protects control
communication. A control frame is the result of several BiSS frames.

Before starting a control frame, the BiSS-C interface master must transmit at least 14 numbers of CDM
equaling 0. Any control frame can be cancelled by transmitting 14 numbers of CDM equaling 0.

In the control communication, addressing is crucial. For the addressing of the slaves, use a slave ID. The
slave ID is assigned according to the sequence in the chain and carried out by setting the ID lock (IDL)
bits for the first eight IDs.

Figure 5. Command Frame

Control communication has the following two types:
• The slave register access (Register Read/Write)
• The command frame

Figure 5 shows the command frame. In the command frame, the control select bit (CTS) is zero (CTS =
0). Using the command frame to support a multipoint connection is beyond the scope of this design.

Figure 6. Register Write

In the register communication (register write or read), the CTS bit is set (CTS = 1). Figure 6 shows the
register write frame.

The slave register access has only 3 ID select bits and 7 bits of register address. Because binary coding
is used, eight slaves and 128 registers can be addressed. This communication is also protected by CRC.
After the CRC has been transmitted, R bits, W bits, and S bits (the read bit, write bit, and start bit,
respectively) are sent (see Figure 6). For a write, access RW equals 01. For a read, access RW equals
10. After the CRC is sent, the P and S bits are sent. A stop bit (P = 0) is at the end of the frame. Following
the stop bit, there can be an optional start bit if the master must perform a sequential access of additional
slave registers.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU794A
http://www.biss-interface.com

ID2..0S CTS CRC3..0 RCDM >=14x

IDL0..7CDS

Cycle

ADR6..0 W S S

SPCRC3..0DATA7..0SWR

System Overview www.ti.com

6 TIDU794A–March 2015–Revised February 2016
Submit Documentation Feedback

Copyright © 2015–2016, Texas Instruments Incorporated

BiSS-C Interface Master Design Guide

Figure 7 shows the register read access by the master. The RW combination is RW equals 10. After the
start bit, the master sends 12 0 bits and 1 stop bit. The slave responds with 8 bits of data protected with 4
bits of CRC.

Figure 7. Register Read

For more information regarding the control communication, see www.biss-interface.com.

2.2 Sitara AM437x Processor
The Sitara AM437x processor family is based on a powerful ARM® Cortex®-A9 core and a rich peripheral
set for industrial interfaces, graphics, security, and motor control. On-chip SRAM of 256KB is a shared
memory between the industrial communication subsystem and the ARM CPU. There are four PRU cores
with their own instruction and data memory.

The four PRUs have full access in the system and can communicate with all memories and I/Os except
ARM CPU memory. The interrupt controller (INTC) in ICSS can send and receive events. Two ICSS
blocks are available for industrial Ethernet and motor-side communication. The device can boot from
various sources including QSPI. Industrial temperature range is supported up to 105°C/Tj. With a JTAG
interface, all cores including PRUs can be debugged using Code Composer Studio™ (CCS). The
processor supports parallel debugging ARM and PRUs. PRU code is developed using external assembler.
The binaries can be loaded manually through CCS or using ARM side loader for PRU firmware. Before
PRU code is executed, configure the subsystem and multiplex the pins. Choose pins for your register-
mapped I/Os for the BiSS interface. The IDK connects to a fast RS-485 transceiver onboard for the BiSS
implementation. See Figure 8 for more details.

Figure 8. AM437x Functional Block Diagram

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU794A
http://www.biss-interface.com

www.ti.com System Overview

7TIDU794A–March 2015–Revised February 2016
Submit Documentation Feedback

Copyright © 2015–2016, Texas Instruments Incorporated

BiSS-C Interface Master Design Guide

2.2.1 PRU-ICSS
PRU-ICSS is a separate processing unit from the ARM core that operates independently and clocks for
greater efficiency and flexibility. PRU-ICSS enables additional peripheral interfaces and real-time protocols
such as EtherCAT®, PROFINET®, EtherNet/IP™, PROFIBUS®, ETHERNET POWERLINK™, Sercos™,
EnDat™, and others. The PRU core runs at 200 MHz and each PRU instruction takes 5 ns to execute,
making it perfect for implementing real-time communication and control systems.

Figure 9 shows the functional block diagram of PRU-ICSS. The PRUs are used for interface functions in
various modes. Real-time Ethernet protocols use the MII interface block which include translation from 4-
bit to 16-bit data and crc32 verification. In GPIO mode, the PRU maps external I/O pins directly to
registers R30 and R31. Serial-based protocols may also use the fast UART, which can be clocked for a
12-Mbaud data rate. BiSS protocol implementation uses direct GPIO mapping to PRU register. The
AM437x processor has two PRU-ICSS subsystems. One subsystem is used for multiprotocol Industrial
Ethernet. The second subsystem solves communication and control functions in power and sense
applications such as servo drives. The memory configuration on application side is reduced to 4KB
instructions. Industrial Ethernet peripheral (IEP) includes a time synchronization unit with many capture
and compare registers. On the application side, this unit is used as the PLL application to synchronize
PWM generation with current sensing and position sensing. For the BiSS-C interface master, the start of
conversion for position measurement must compensate for line delay. The compare register in an IEP
timer triggers an event with a 5-ns resolution. Basic signal processing functions are accelerated with a
single-cycle hardware multiplier. Position data from the BiSS interface master interface can feed into the
fast Fourier transform (FFT) to detect vibration of mechanical system.

Figure 9. PRU-ICSS Block Diagram

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU794A

B
iS

S
-C

 F
irm

w
ar

e
P

R
U

-I
C

S
S

Shared MemoryARM Cortex® A9

AM437x IDK

BiSS Encoder

SLO

MA

RS485 Transceiver
(SN65HVD78D)

Logic Diagram (Positive Logic)

R

RE

DE

D

V
CC

B

A

GND

1

2

3

4

8

7

6

5

6

7

A

B3

4

2

1

DE

D

RE

R
V

CC

B

A

GND

R

RE

DE

D

8

7

6

5

1

2

3

4

D Package DGK Package

System Overview www.ti.com

8 TIDU794A–March 2015–Revised February 2016
Submit Documentation Feedback

Copyright © 2015–2016, Texas Instruments Incorporated

BiSS-C Interface Master Design Guide

2.3 RS485 Transceiver
The RS485 transceiver used in this design is the SN65HVD78. This device supports data rates up to 50
Mbps in a small package and a temperature range of –40°C to +125°C. The SN65HVD78 operates at 3.3
V with robust ESD and EMC protection. The device provides half-duplex communication interface for
applications like factory automation, telecom infrastructure, and motion control. Figure 10 shows the
package and logic diagram of the RS485 transceiver.

Figure 10. RS485 Transceiver – SN65HVD78

3 System Implementation
The BiSS-C master function is implemented on the TI Sitara AM437x IDK, which has an onboard RS485
transceiver for interfacing with the BiSS encoder. The design uses the PRU-ICSS on AM437x IDK for
implementing the BiSS-C interface master firmware. The firmware is in PRU0 of ICSS0. The remaining
PRUs in the AM437x IDK are available for industrial Ethernet communication or motor-control application.

Figure 11 outlines the system implementation. The ARM Cortex-A9 processor communicates over shared
memory to the BiSS-C interface master on PRU-ICSS. A command interface in the shared memory is
implemented and provides parameters on data, transmission, status, and errors for the communication.

Figure 11. System Implementation

A data structure in the shared memory is used for the communication between the PRU_ICSS and the
host.

PRU accesses shared memory through the PRU constant table entry C28. ICSS0 has no PRU shared
memory at location 0x0001.0000, therefore C28 points to 0x0000.0000 (PRU0 local memory).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU794A

www.ti.com System Implementation

9TIDU794A–March 2015–Revised February 2016
Submit Documentation Feedback

Copyright © 2015–2016, Texas Instruments Incorporated

BiSS-C Interface Master Design Guide

Table 1 shows the structure in the shared memory.

Table 1. Structure in Shared Memory

MEMORY LOCATION ACCESS NUMBER OF BITS CONTENT
0x0000_0000 Write 8 Data length
0x0000_0001 Write 8 Number of bits CRC + nE +nW
0x0000_0002 Write 8 Frequency (supported

frequencies: 1 = 1 MHz, 2 = 2
MHz, 5 = 5 MHz,10 = 10 MHz)

0x0000_0004 Write 32 Hex equivalent of control frame
0x0000_0008 Read 32 Position data higher word
0x0000_000C Read 32 Position data lower word
0x0000_0010 Read 32 Control communication result
0x0000_0014 Read 16 Position data CRC error counts
0x0000_0016 Read 8 Error flags
0x0000_0018 Read 8 Position data CRC
0x0000_0019 Read 8 Control communication CRC
0x0000_001A Read 8 Raw data byte with transition

point
0x0000_001C Read 16 Processing time requested by

the slave
0x0000_001E Read 8 Line delay

Table 2 shows the error flags at the memory location 0x0000_0016 that include various error and status
flags.

Table 2. Status Flags

BIT POSITION FLAG NAME DESCRIPTION
0 SMA_FLAG Set when simple moving average is

available.
1 PROC_TIME_ERR Set when process time exceeds the

defined limit.
2 CMD_START_FLAG Set when master starts sending control

frame bits.
3 POS_CRC_ERR Set when there is a position CRC error.
4 CMD_CRC_ERR Set when there is a control frame CRC

error.
5 NO_SLAVE_FLAG Set when there is no slave connected.
6 EM_STOP_TEST Set on emergency stop for testing.
7 Not used

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU794A

System Implementation www.ti.com

10 TIDU794A–March 2015–Revised February 2016
Submit Documentation Feedback

Copyright © 2015–2016, Texas Instruments Incorporated

BiSS-C Interface Master Design Guide

3.1 System Specifications
Table 3 lists the relevant system parameters. The hardware and software design support a maximum of
10-Mb data rate with a cable of up to 10 m. Lower-frequency steps allow for longer cables between
master interface and encoder. A maximum length of 64 bits of data is supported in one communication
cycle. Both position data and control data have a checksum. The complete BiSS-C interface master
implementation takes 2.5KB out of 4KB instruction memory, leaving enough memory for customization
and feature additions.

Table 3. System Specifications

PARAMETER SPECIFICATION DETAILS
Maximum frequency 10 MHz Supported up to 10-m cable

Start-up/Initialization frequency 1 MHz After power on or reset
Frequencies supported 1 MHz, 2 MHz, 5 MHz, 10 MHz Can be switched during run time

Length of protocol 64 bits Maximum number of bits
Position data CRC 6 bits For position data verification

Position data CRC polynomial 0x43h Polynomial used for position data
verification

Control data CRC 4 bits For control data verification
Control data CRC polynomial 0x13 Polynomial for control data verification

Firmware size 2.5KB Total number of instructions 650

3.2 Firmware Implementation
The following section describes the firmware implementation of the BiSS-C interface master on PRU-
ICSS. deterministic behavior of the 32-bit RISC core running at 200 MHz provides 5-ns resolution on
sampling external signals and generating external signals. The firmware is written in modular block,
reusing software components for different clock frequencies.

The high-speed data transmission with a maximum frequency of 10 MHz is implemented in the PRU-ICSS
using a 28-bit shift mode for incoming data. 28-bit shift mode is used to sample a 1-data bit sent by the
slave to multiple samples and select the most stable bit inside the oversampling window. Oversampling
with a factor of 8 significantly improves the reliability of transmission with longer cables.

3.2.1 PRU 28-Bit Shift Mode
In the firmware, the GPI line for SLO is configured as the 28-bit shift mode. The GPI line is configured
through the PRUSS_CFG registers. For more information, see Figure 12.

Figure 12. 28-Bit Shift Mode

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU794A

ACK SB CDS MSB LSB nE nW MSB LSB

CDM

CRC Time out

MA

SLO

Zooming In

SLO line high

11111111Oversampled data

Position
Data

200 MHz / DIV0
Sampling Frequency

DIV1
=

www.ti.com System Implementation

11TIDU794A–March 2015–Revised February 2016
Submit Documentation Feedback

Copyright © 2015–2016, Texas Instruments Incorporated

BiSS-C Interface Master Design Guide

In the 28-bit shift mode, pru<n>_r31_status [0] is sampled and shifted to the 28-bit shift register on an
internal clock pulse. The register fills in LSB order (from bit 0 to 27) and then overflows into the bit bucket.
The shift rate is controlled by the effective divisor of two cascaded dividers applied to the 200-MHz clock.
These divisors are configured using PRUSS_CFG registers.

Figure 13 shows that the sampling frequency is calculated using the DIV0 and DIV1.

Figure 13. Sampling Frequency

In this design, the 28-bit shift mode is configured to have eight samples for a single-slave data bit.
Consequently, the fractional divisors cause the oversampling clock for the 28-bit shift mode to be eight
times the BiSS-clock frequency. Table 4 lists the divisors and frequencies used for various BiSS clock
frequencies using 8× oversampling. DIV0 and DIV1 can be set from 1 to 16 in increments of 0.5.

Table 4. Divisor Selection for 28-Bit Shift Mode

SERIAL NUMBER BiSS CLOCK
FREQUENCY

OVERSAMPLING
FREQUENCY

DIVISOR0 (DIV0) DIVISOR1 (DIV1)

1 1 MHz 8 MHz 0x17 0x2
2 2 MHz 16 MHz 0x17 0x0
3 5 MHz 40 MHz 0x8 0x0
4 10 MHz 80 MHz 0x3 0x0

The 28-bit shift mode fills register R31 from R31.t0 to R31.t27. In the configuration of eight times
oversampling the first byte of the register R31, R31.b0 carries the samples for 1 slave data bit.

Figure 14 shows the oversampled data which resides in R31 byte 0. If the zoomed-in data bit is 1, then
R31.b0 contains 1s.

Figure 14. R31.b0 During Transmission

These eight samples are used to find the best sample point for data in the SLO line (slave-data bit). The
first low-to-high transition on new communication cycle determines the sampling point in the middle of a bit
window.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU794A

System Implementation www.ti.com

12 TIDU794A–March 2015–Revised February 2016
Submit Documentation Feedback

Copyright © 2015–2016, Texas Instruments Incorporated

BiSS-C Interface Master Design Guide

3.2.2 Supported Frequencies
To comply with BiSS-C interface protocol standards, the frequency for transmission varies with the length
of the cable. The BiSS-C master firmware is configured to support different frequencies. The various
frequencies that the firmware can support are given in the following table.

Table 5 lists the TI-recommended frequency values of the length of the cable. The host or user must
select one of these frequencies before starting the transmission. The firmware then starts the transmission
at the selected frequency.

Table 5. Supported Frequencies

SERIAL NUMBER CABLE LENGTH FREQUENCY
1 Up to 10 m 10 MHz
2 Up to 25 m 5 MHz
3 Up to 60 m 2 MHz
4 Up to 100 m 1 MHz

3.2.3 Software Files
This design limits the software components required to run the BiSS-C interface. There is no ARM side
code needed to operate the interface. There are three types of files in this design.
• Gel scripts
• BiSS-C master firmware file
• Include files

The AM437x_BiSS_Gel folder contains the gel scripts that initialize the system. The
AM43xx_BiSSConfig.gel file multiplexes the pins for the design and the receive line of the RS485
transceiver. Section 4 explains how to use the gel scripts.

The pru0_BiSS.p file is the BiSS-C master firmware file. The main functions and the subfunctions are
implemented in this file.

The Include folder contains the header files and the macros in the design.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU794A

Start

Startup section

BiSS Clock
Frequency = 10 MHz

Multiple Frequencies
Section

Optimized section for
10 MHz

End of Position data
transmission?

Post Processing

Yes

No

Yes

 Transmission
request?

Stop
No

Yes

www.ti.com System Implementation

13TIDU794A–March 2015–Revised February 2016
Submit Documentation Feedback

Copyright © 2015–2016, Texas Instruments Incorporated

BiSS-C Interface Master Design Guide

3.2.4 Firmware Architecture
The firmware has the following sections:
• Start-up section
• Multiple frequency section
• Optimized section for 10 MHz
• Post processing

The start-up section initializes some variables and does some start-up configuring. This section is only
executed once during start-up.

The multiple frequency section includes several small blocks of codes. The timing of these blocks is
scalable and configurable according to the selected frequencies. This section supports BiSS clock
frequencies of 1 MHz, 2 MHz, and 5 MHz.

The optimized section for 10 MHz is a special section that is only for 10-MHz BiSS clock frequency.
Whenever the host requests for transmission in 10-MHz BiSS clock frequency, the BiSS-C interface
master executes this section of code.

The post processing section is the code where the BiSS-C interface master executes the post-
transmission functions like control communication, CRC verification, and writing to the shared memory.

Figure 15 shows the program flow of the BiSS-C interface master firmware.

Figure 15. Firmware Block Diagram

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU794A

Start

 IEP Timer
Configuration

If slave
connected

 Load Data length, CRC
+ nE + nW length

Variable Initializations

Set MA Clock

Wait for 40uS

Check slave connected
or not

Multiple Frequencies
Section

Stop
No

Yes

System Implementation www.ti.com

14 TIDU794A–March 2015–Revised February 2016
Submit Documentation Feedback

Copyright © 2015–2016, Texas Instruments Incorporated

BiSS-C Interface Master Design Guide

3.2.4.1 Start-Up Section
The main functionality of the start-up section is the initialization of variables and configuration of the PRU-
ICSS. This section is executed only once after loading and starting the code.

The firmware checks whether the slave is connected to the master. The firmware detects the slave by
checking whether the receive line is high after setting the clock line to high because the BiSS (SLO) line is
high during reset. The firmware informs the host if the slave is disconnected with an error signal.

The first step in the start-up section is the configuration of industrial Ethernet peripheral (IEP) timer for
triggering the transmission. The IEP timer is configured to trigger the transmission every 100 µs.

The start-up section also loads the data length (variable DATA_LENGTH), number of CRC, nE bits, and
nW bits (variable CRC_ERR_WAR) from the shared memory. These values are configured by the host.
The firmware uses the values to calculate the clock length (variable CLOCK_LENGTH) and the CDS bit
number (variable CDS_BIT_NUMBER). Some of the other variables are also initialized in the start-up
section like the bit number for the clock in the R30 register (variable CLK_BIT_NUMBER).

The start-up section executes a reset or start-up delay of 40 µs, which helps the slave maintain a break
between the power on and the transmission.

The Figure 16 shows the flow chart of the start-up section.

Figure 16. Start-up Section

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU794A

Start

BiSS CLK frequency 1/2/5MHz
and 28-bit shift configuration

If SMA
avaiabe

INIT
(Local Variables Initialization)

Clocks before ACK bit

Line delay

Counting Number of 1s and
Finding Sample Point(SP)

Update SP with SMA

Processing Time Request by
slave

No

Yes

If !ACK

Yes

No

If Start Bit

CDS bit

Data Stream

Line Delay Compensation

Post Processing

No

Yes

www.ti.com System Implementation

15TIDU794A–March 2015–Revised February 2016
Submit Documentation Feedback

Copyright © 2015–2016, Texas Instruments Incorporated

BiSS-C Interface Master Design Guide

When the start-up delay is completed, the firmware checks whether the slave is connected or not. If the
slave is disconnected with the BiSS-C interface master, firmware sets a NO_SLAVE_FLAG error flag.

If the slave is connected, it executes the multiple frequency section once and provides a line delay to the
host. In the start-up section, the BiSS-C interface master configures the multiple frequency section with an
operating frequency of 1 MHz. When the start-up section completes, the master is ready for the position
data and control data transmission.

After the start-up section, the host can use the line-delay value to select an appropriate operating
frequency to execute the position data transmission.

3.2.4.2 Multiple Frequency Section
This section is executed whenever the BiSS clock frequency is less than 10 MHz. A TIME_DELAY
variable scales the time duration and lets this section support multiple BiSS clock frequencies. This
section is also built with a number of small blocks of codes which perform different tasks. These blocks
are named based on their functionalities. These names can be found in the firmware in the same name.
The 10-MHz BiSS clock frequency is handled by an optimized firmware section, which is similar to the
multiple frequency section.

The multiple frequency section and the optimized section for 10 MHz generate the BiSS clock signal for
the selected frequency. The clock signal is generated by the deterministic behavior of the PRU core.

In the firmware, the SET instruction sets the MA clock line and CLR instruction for clearing the MA clock
line. Both instructions support bit-wise addressing and do not affect bits in the register. Each PRU
instruction takes 5-ns execution time. To program a fixed frequency, certain numbers of instructions are
executed between every SET and CLR instruction. In the multiple frequencies section, a TIME_DELAY
variable makes the time delay between each SET and CLR scalable.

Figure 17 shows the tasks in the multiple frequency section.

Figure 17. Multiple Frequency Section

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU794A

System Implementation www.ti.com

16 TIDU794A–March 2015–Revised February 2016
Submit Documentation Feedback

Copyright © 2015–2016, Texas Instruments Incorporated

BiSS-C Interface Master Design Guide

The following section describes tasks in the multiple frequency section.

3.2.4.2.1 BiSS CLK Frequency Configuration
The multiple frequency section starts with the configuration of BiSS clock frequency. The corresponding
oversampling rate is also configured by the firmware. The oversampling rate (28-bit shift rate) is
configured to be eight (×2) times the BiSS clock frequency. For one BiSS clock cycle, the data bits sent by
the slave is sampled eight (×2) times and shifted into the R31 bit 0–8.

The following four code sections in the firmware configure the four different frequencies:

• BiSS_CLK frequency 1-MHz configuration
• BiSS_CLK frequency 2-MHz configuration
• BiSS_CLK frequency 5-MHz configuration
• BiSS_CLK frequency 10-MHz configuration

The two main functionalities of these blocks are to configure the TIME_DELAY variable based on the
selected frequency and to configure the 28-bit shift mode.

By varying the TIME_DELAY variable, the firmware can automatically switch to a new frequency. This
variable is used before every SET/CLR BiSS clock instruction that makes the time duration between BiSS
clocks scalable.

When the host selects a new BiSS clock frequency, the 28-bit shift mode must be reconfigured. The 28-bit
shift rate must always be eight times the BiSS clock frequency. The two cascaded divisors select an
appropriate shift rate for the 28-bit shift mode. The DIV0 and DIV1 values for selecting shift rates, which
are suitable for the BiSS clock frequencies in the implementation, are given in the 28-bit shift mode
section of the document.

Table 6. 28-Bit Shift Mode Divisors

SERIAL NUMBER DIV0 DIV1 VALUES TO BE WRITTEN IN
HEX

1 1 1 0x0
2 1.5 1.5 0x1
3 2 2 0x2
4 2.5 2.5 0x3
5 3 3 0x4
6 3.5 3.5 0x5
7 4 4 0x6
8 4.5 4.5 0x7
9 5 5 0x8
10 5.5 5.5 0x9
11 6 6 0xA
12 6.5 6.5 0xB
13 7 7 0xC
14 7.5 7.5 0xD
15 8 8 0xE
16 8.5 8.5 0xF
17 9 9 0x10
18 9.5 9.5 0x11
19 10 10 0x12
20 10.5 10.5 0x13
21 11 11 0x14
22 11.5 11.5 0x15
23 12 12 0x16
24 12.5 12.5 0x17

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU794A

www.ti.com System Implementation

17TIDU794A–March 2015–Revised February 2016
Submit Documentation Feedback

Copyright © 2015–2016, Texas Instruments Incorporated

BiSS-C Interface Master Design Guide

Table 6. 28-Bit Shift Mode Divisors (continued)
SERIAL NUMBER DIV0 DIV1 VALUES TO BE WRITTEN IN

HEX
25 13 13 0x18
26 13.5 13.5 0x19
27 14 14 0x1A
28 14.5 14.5 0x1B
29 15 15 0x1C
30 15.5 15.5 0x1D
31 16 16 0x1E

For supporting additional BiSS frequencies and 28-bit shift rates, use Table 6. Table 6 lists various
possibilities of the DIV0 and DIV1 and the corresponding hex values to write to the GPCFG_n (GPCFG0
or GPCFG1) registers.

3.2.4.2.2 Local Variables Initialization
The multiple frequency section has a local initialization block that initializes all the local variables that must
be initialized before every position-data transmission. These variables are CLK_LENGTH, RESULT_REG,
SHIFT_INDEX, PROCESS_TIME, and TEMP_REG to find the line delay.

The CLK_LENGTH variable is calculated using variables and constants like DATA_LENGTH,
CRC_ERR_WAR, ACK, SB, and CDS. As the constants, the ACK, SB, and CDS bits require one BiSS
clock per BiSS frame. The sum of these three constants is 3. CRC_ERR_WAR stands for the sum of the
number of CRC bits, nE bits, and nW bits. This value is provided by the host before the start-up. The
DATA_LENGTH variable is also provided by the host before start-up. This variable is the position-data
length or the accuracy of the encoder. The sum of all these variables and constants gives the
CLK_LENGTH value. The clocks before the ACK bit are not considered while calculating the value of the
CLK_LENGTH. The calculated value of CLK_LENGTH is copied into a temporary register for the
calculation of the line delay.

3.2.4.2.3 Clocks Before ACK Bit
The Clocks before ACK bit block sends the clocks before the ACK bit. The BiSS slave acknowledges at
the second rising edge of the MA clock because of protocol. The firmware returns from this block after
giving the second rising edge.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU794A

CDM
MA @
Master

ACK SB CDS MSB LSB nE nW MSB LSB

CDM
MA @
Slave

SLO @
Slave

ACK SB CDS MSB LSB nE nW MSB LSB

SLO @
Master

Line delay

Time out

Time out

MSB

System Implementation www.ti.com

18 TIDU794A–March 2015–Revised February 2016
Submit Documentation Feedback

Copyright © 2015–2016, Texas Instruments Incorporated

BiSS-C Interface Master Design Guide

3.2.4.2.4 Line Delay
The Line-Delay block calculates the line delay of cable. The block checks whether the slave has asserted
the ACK bit. If the BiSS-C interface master detects the ACK bit immediately after the clocks before ACK
bit block, the firmware determines that there is no line delay due to the longer cables. Otherwise, the
firmware executes Line Delay block and decrements the CLK_LENGTH for each BiSS clock cycle. As a
result, the Line delay is calculated by subtracting the CLK_LENGTH value when the master detects the
ACK bit from the temporary register whose value is initialized as the total number of clocks.
//Finding the Line delay in number of cycles
SUB TEMP_REG_1.b0, TEMP_REG_1.b2, CLK_LENGTH

The previous code is for finding the line delay.

Figure 18 shows how the line delay affects the transmission.

Figure 18. Line Delay

Until the slave asserts ACK signal low. all oversampled data bits in R30.b0 remain 1. When there is a
transition from high to low, the oversampled data changes from 255 to a value less than 255. The
firmware detects an ACK bit by checking if R31.b0 is equal to 255. When R31.b0 is unequal to 255, the
firmware detects a transition from high to low in the SLO line.

After detecting the ACK bit, the block must to find the sample point from the last received byte in the
Counting Number of 1s and Finding Sample Point block.

3.2.4.2.5 Counting the Number of 1s and Finding the Sampling Point
As per the BiSS clock frequency configuration block, every bit that the encoder sends is sampled eight
times and saved in R31.b0. The most stable bit from the samples must be selected as the sample point.
An algorithm is used to find the sample point.

The R31.b0 value is copied into a variable RAW_DATA after setting the BiSS clock line. Copying the
R31.b0 value occurs at certain time intervals proportional to BiSS clock frequency. To find the sample
point, firmware uses the RAW_DATA byte, which includes the transition from high to low (ACK bit).

To find the sample point, calculate the number of 1s in the RAW_DATA byte.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU794A

If bit7
High?

Number of 1s
is 0

If bit6
High?

If bit5
High?

If bit0
High?

If bit6
High?

If bit5
High?

If bit5
High?

If bit4
High?

If bit3
High?

If bit2
High?

If bit1
High?

If bit0
High?

Number of 1s
is 1

Number of 1s
is 2

Number of 1s
is 3

Number of 1s
is 4

Number of 1s
is 5

Number of 1s
is 6

Number of 1s
is 7

Number of 1s
is 8

Yes

No

No

No

No

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

YesYes

www.ti.com System Implementation

19TIDU794A–March 2015–Revised February 2016
Submit Documentation Feedback

Copyright © 2015–2016, Texas Instruments Incorporated

BiSS-C Interface Master Design Guide

3.2.4.2.5.1 Counting the Number of 1s in a Byte
The number of PRU assembly instructions must always be the same between the SET and CLR
instructions to maintain the clock frequency in the BiSS-C firmware. Firmware uses an algorithm that can
efficiently calculate the number of 1s in a byte. The execution time for this algorithm is always the same
and independent of bit combinations.

Figure 19 shows how this algorithm is implemented in the BiSS-C interface master firmware.

Nine blocks are used to find the number of 1s. For any bit combination, the algorithm can find the number
of 1s using 10-PRU instructions.

Figure 19. Counting Number of Ones in a Byte

The algorithm starts with checking bit 7. If bit 7 is high, the firmware skips the first block and jumps to the
second block where firmware checks whether the bit 6 is high. And if the bit 6 is high, the firmware skips
the second block and jumps to the third and so forth. The following code shows a snapshot of the PRU
code.
no_of_ones:
QBBS count1, RAW_DATA.t7
QBBS count1.1, RAW_DATA.t6
QBBS count1.2, RAW_DATA.t5
QBBS count1.3, RAW_DATA.t4
QBBS count1.4, RAW_DATA.t3
QBBS count1.5, RAW_DATA.t2
QBBS count1.6, RAW_DATA.t1
QBBS count1.7, RAW_DATA.t0
MOV TEMP_REG_1.b1, 0
QBA sample_point

If the byte contains all ones, firmware executes only the first instruction of each block and then jump to the
next and so forth to give the number of 1s as 8. Firmware exits from the algorithm. As a result, the
algorithm executes exactly 10 instructions for this operation.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU794A

Start

N = # of ones

If X > 4

X = 7 - N

Sample Point = X - 4 Sample Point = 8 - Y

Copy the new
Oversampled byte of

data

Y = 4 - X

Save the Sample point
for SMA

Stop

No

Yes

System Implementation www.ti.com

20 TIDU794A–March 2015–Revised February 2016
Submit Documentation Feedback

Copyright © 2015–2016, Texas Instruments Incorporated

BiSS-C Interface Master Design Guide

If the byte contains all 0s, the firmware does not return from the first block to any other blocks in the
algorithm because all the conditions are false. Consequently, the result is 0. In this case, the algorithm
also executes in 10 instructions.

The number of instructions executed is the same for other combinations of 1s and 0s.

The number of 1s in the byte is used to find the sample point. This sample point is a bit number or bit
position, which is used for every data bit sent by the encoder.

3.2.4.2.5.2 Finding the Sample Point
Figure 20 shows the algorithm used to find the sample point.

Figure 20. Algorithm to Find a Sample Point

NOTE: In the flow chart, variables like X, Y, and N are used. In the firmware, temporary registers are
used.

To find X and Y, do the following:
1. Find X by subtracting the number of ones N in the RAW_DATA byte from 7.
2. Compare X with 4. If X is greater than 4, the sample point is the result of X – 4.

NOTE: If X is less than 4, the sample point is in the new oversampled byte.

3. Find Y by subtracting X from 4.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU794A

11110101 00000000

Transition Point Sample Point

www.ti.com System Implementation

21TIDU794A–March 2015–Revised February 2016
Submit Documentation Feedback

Copyright © 2015–2016, Texas Instruments Incorporated

BiSS-C Interface Master Design Guide

4. Copy the new oversampled byte from R31.b0 to RAW_DATA.
5. Determine the sample point by subtracting Y from 8.

NOTE: The sample point defines the bit that is representing the ACK bit.

6. Copy the sample point into a temporary register to find the simple moving average (SMA).

The following example shows how to calculate the SMA to help you understand the algorithm.

Consider the last 2 bytes are the following:
• Old byte = 11110101 (This byte contains the transition.)
• Latest byte = 00000000 (This byte is the latest byte.)
1. As old byte is not equal to 255, find the number of ones in it. The result is N = 6.
2. To find X, perform equation 1.

X = 7 – N
X = 7 – 6
X = 1

3. Compare X with 4 to see whether X is less than 4.
4. To find Y, perform equation 2.

Y = 4 – X
Y = 4 – 1
Y = 3

5. Copy the latest byte.

NOTE: The sample point is in the latest byte in this case.

6. Subtract Y from 8 to find the sample point.
SP = 8 – Y
SP = 8 – 3
SP = 5

Figure 21 shows the result.

Figure 21. Example for Sample Point

Figure 21 shows the sample point is at bit position 5. After finding the sample point, the firmware checks
only the bit at the bit position number SP from the 8 samples for every slave data bit. The firmware uses
QBBS to find whether the bit at the sample point is high. The simple moving average (SMA) is a method
for filtering the sample point that improves its accuracy.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU794A

CDMMA

ACK SB CDS MSB LSB nE nW MSB LSBSLO

Processing
Time Request

Time out

(SP1 SP2 SP3 SP4)
SMA

4

+ + +
=

Oldest SP

SP4 SP3 SP2 SP1

Byte 3 Byte 2 Byte 1 Byte 0

Temporary Register

Shift out

Newest SP

System Implementation www.ti.com

22 TIDU794A–March 2015–Revised February 2016
Submit Documentation Feedback

Copyright © 2015–2016, Texas Instruments Incorporated

BiSS-C Interface Master Design Guide

3.2.4.2.6 Updating SP With SMA
This block checks whether the SMA is available and (if available) if the sample point is updated with the
SMA.

A simple moving average filters the sample point in the BiSS-C interface master firmware. The subset size
is 4. The last four sample points are averaged to find the SMA. When a new sample point is available, the
oldest sample point is omitted and the newest sample point is considered by the SMA algorithm to find the
SMA value.

Figure 22. Simple Moving Average Algorithm

Figure 22 shows how the newest sample point is added to the temporary register and the oldest sample
point is shifted out.

The following equation calculates the SMA.

(1)

When the host selects a new BiSS clock frequency, the SMA is disabled for four cycles to collect the first
four sample points. When enough numbers of sample point values are collected in a temporary register,
firmware sets a SMA_FALG flag. The post processing section performs SMA calculation, enabling, and
disabling.

The Update SP with SMA block checks whether the SMA is available. If the SMA is available, the block
updates the sample point with SMA value.

3.2.4.2.7 Processing Time Request by Slave
The encoders can request additional processing time before sending data, for example, for A/D
conversion or accessing memory. Slaves do this by delaying the start bit. If there is a process time
request by the slave, ACK signal takes more than one BiSS clock. If the slave requests the processing
time, the BiSS-C master must provide extra clock cycles.

Figure 23. Processing Time Request by Slave

Figure 23 shows how the processing time is requested by delaying the start bit (SB). The maximum
required processing time should be configured as the timeout period in the master. If the processing time
exceeds this limit, the frame is cancelled.

The Processing Time Request by Slave block detects the processing time by checking the SB. After
executing the Update SP with SMA block, firmware checks whether the bit at the filtered sample point is
high or how. As per the protocol, SB is in high state. If the bit at the sample point is high, firmware detects
the SB and it jumps to the CDS bit block. Otherwise, the Processing Time Request by Slave block is
repeated until the firmware detects the SB. The PROCESS_TIME variable is incremented in every cycle to
count the number of clock cycles.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU794A

www.ti.com System Implementation

23TIDU794A–March 2015–Revised February 2016
Submit Documentation Feedback

Copyright © 2015–2016, Texas Instruments Incorporated

BiSS-C Interface Master Design Guide

If the slave requests additional processing time, the firmware provides extra clocks. The value of the
PROCESS_TIME after detecting the SB is the total processing time requested by the slave. This value is
counted as BiSS clock cycles is equal to the extra number of clock cycles from the firmware. If this value
is greater than the value in the PROC_TIME_MAX variable, the BiSS frame is dropped.

3.2.4.2.8 Control Data Slave Bit
The next block is the Control Data Slave (CDS) bit. According to the protocol description, the CDS bit
comes after the SB. The CDS bit is saved to the result register in this block.

This bit is also used in the control communication. When BiSS-C interface master firmware initiates a
control communication, the CDS bits are extracted from the RESULT_REGs to CDS_RESULT register.

3.2.4.2.9 Data Stream
In the Data Stream block, the BiSS-C interface master firmware starts saving the position data, the nE bit,
the nW bit, and CRC bits into the result registers.

For each BiSS clock cycle, 1 bit is saved and the CLK_LENGTH variable is decremented by 1. In this
block, the firmware checks the bit at the SP is high or low. If the bit is high, the bit0 of the RESULT_REG1
register is set by the firmware and shifted one position left. If the bit is low, the bit0 is cleared by the
firmware and shifted left.

A SHIFT_INDEX variable tracks the number of bits shifted into the result registers. If the variable is 31, the
firmware copies the value of RESULT_REG1 to the RESULT_REG2 register .

This block is repeated until the value of the CLK_LENGTH variable is 0. When the value of the
CLK_LENGTH variable is 0, the firmware returns from this block to the final block in the Line Delay
Compensation block of the multiple frequency section.

3.2.4.2.10 Line Delay Compensation
The Line Delay Compensation block is the final block in the multiple frequency section. In this block, the
firmware compensates the line delay. As per the Line Delay Compensation block, the calculated line delay
value is stored in a temporary register. In the Line Delay Compensation block the temporary register is
checked to determine if it is a line delay. If there is no line delay, the firmware exits the block to the post
processing section. If there is line delay, the firmware repeats the Line Delay Compensation block for n
times, where n is equal to the value of line delay. The firmware fails to provide any extra clocks to the
slave in the Line Delay Compensation block. As there is a time delay in receiving data bits, the firmware
only must read in the data bits in correct intervals without giving any extra BiSS clocks. Copying the
R31.b0 to the RAW_DATA byte must be in the same intervals of time as the DATA_STREAM block. With
this sequence, the delayed bits can be read without missing any data bits sent by the slave.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU794A

Start

BiSS CLK frequency 10 MHz
and 28-bit shift configuration

INIT_10 MHz
(Local Variables

Initialization)

10-MHz Block - Clocks
before ACK bit

Line delay

10-MHz Block - Counting
Number of 1s and Finding

Sample Point(SP)

10-MHz - Processing Time
Request by slave

If !ACK

Yes

No

If Start Bit

10 MHz - CDS bit

10 MHz - Data Stream

10 MHz - Line Delay
Compensation

Post Processing

YesNo

//Finding the Line delay in number of cycles
SUB TEMP_REG_1.b0, TEMP_REG_1.b2, CLK_LENGTH

System Implementation www.ti.com

24 TIDU794A–March 2015–Revised February 2016
Submit Documentation Feedback

Copyright © 2015–2016, Texas Instruments Incorporated

BiSS-C Interface Master Design Guide

3.2.4.2.10.1 Optimized Section for 10 MHz
This section of code is similar to the multiple frequency section. This section is optimized to support only
10 MHz. Because each instruction in PRU takes 5 ns to generate 10-MHz clock using PRU, the number of
instructions between each SET and CLR instructions must be 9. Because some of the blocks in the
multiple frequency section have more than 10 instructions, a separate block of code is required to support
10-MHz BiSS clock frequency.

The main difference between the multiple frequency section and optimized section for 10 MHz is that the
optimized section for 10 MHz is optimized only for 10 MHz and it does not use scalable TIME_DELAY
variable for supporting any other BiSS clock frequencies. Because there are not enough spare cycles to
check whether the SMA is available in the optimized section for 10 MHz block, SMA is disabled for the 10
MHz. This is due to the Counting Number of 1s and Finding Sample Point block. It can be resolved using
a different method to optimize the counting number of 1s. A look-up table can be used to find the number
of 1s in the byte. The shared memory can be used to precalculate the lookup table with 256 entries (256
bytes). Each byte includes the number of 1-s value. An INDEX variable can be used to point to the shared
memory location.

Example code follows.

This method can reduce the number of instructions required for the calculation of the number of ones in a
byte with the expense of 256 bytes of memory from the shared memory. Figure 24 shows the flow chart
for the optimized section for 10-MHz.

Figure 24. Optimized Section for 10 MHz

The optimized section for 10 MHz also jumps to the post processing section after receiving all the data
bits from the slave.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU794A

Start

Control Communication

If Control
Communication

request

4-bit CRC Verification

Frequency Selection

No

Yes

SMA Calculation

Position Data Extraction

6bit CRC Verification

If Start of
Transmission

request

Wait for Start of Transmission
Event

Yes

No

If BiSS Clock
frequency =

10 MHz

Multiple Frequencies
Section

Optimized Section for
10 MHz

www.ti.com System Implementation

25TIDU794A–March 2015–Revised February 2016
Submit Documentation Feedback

Copyright © 2015–2016, Texas Instruments Incorporated

BiSS-C Interface Master Design Guide

3.2.4.2.10.1.1 Post Processing
The main tasks of post processing include the following:
• Control communication
• 4-bit CRC verification
• Frequency selection
• SMA calculation
• Position data extraction
• 6-bit CRC verification
• Time-out
• Error signaling

Figure 25 shows the post processing section flow chart.

Figure 25. Post Processing Section

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU794A

System Implementation www.ti.com

26 TIDU794A–March 2015–Revised February 2016
Submit Documentation Feedback

Copyright © 2015–2016, Texas Instruments Incorporated

BiSS-C Interface Master Design Guide

3.2.4.2.11 Control Communication
For the control communication, CDM bits must be sent during the time out period of each BiSS frame.
Control communication occurs in the post processing section. Before starting to send a control frame, a
series of at least 14 CDM equals 0 bits must be sent. The first CDM equals 1 bit after the 14 CDM equals
0 bits is the SB of the control frame. The CTS equals 1 bit is sent for slave register read/write. The CDM
bit is sent inverted on the MA clock line. In the BiSS-C interface master firmware implementation, the
control frame (CDM bits) is precalculated in equivalent hex value. A memory location is defined for the hex
equivalent of control frame in the shared memory location. When the host provides a hex equivalent of a
control frame in the defined memory location, firmware executes control communication and puts the
result in the defined location for the control communication result. Table 7 lists hex equivalents for various
control frames and the meaning of each control frame.

Table 7. Hex Equivalent of Control Frame

Serial No. Operation Hex Equivalent Meaning
1 Read at 0x44 0x889B4000 Read 32-bit serial number
2 Read at 0x45 0x88BD4000 Read 32-bit serial number
3 Read at 0x46 0x88D74000 Read 32-bit serial number
4 Read at 0x47 0x88F14000 Read 32-bit serial number
5 Read at 0x60 0x8C174000 Read status bits of encoder
6 Write to 0x60 0x8C13C194 Send commands to the

encoder
7 Read at 0x67 0x8CE54000 Read internal temperature
8 Read at 0x68 0x8D014000 Read error/warning messages
9 Read at 0x78 0x8F0B4000 Read 48-bit device ID
10 Read at 0x79 0x8F2D4000 Read 48-bit device ID
11 Read at 0x7A 0x8F474000 Read 48-bit device ID
12 Read at 0x7B 0x8F614000 Read 48-bit device ID
13 Read at 0x7C 0x8F934000 Read 48-bit device ID
14 Read at 0x7D 0x8FB54000 Read 48-bit device ID

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU794A

ID2..0S CTS CRC3..0 RCDM >=14x

IDL0..7CDS

Cycle

ADR6..0 W S S

SPCRC3..0DATA7..0SWR

www.ti.com System Implementation

27TIDU794A–March 2015–Revised February 2016
Submit Documentation Feedback

Copyright © 2015–2016, Texas Instruments Incorporated

BiSS-C Interface Master Design Guide

Figure 26 is an example control frame calculation for reading from register at address 0x67 to understand
the method of how to calculate the control frame hex equivalent.

Figure 26. Register Read Access

Figure 26 shows the register read access. The first CDM equals 1 bit after a series of at least fourteen
instances of CDM equals 0 is the start bit of the control communication. This start bit is not included in the
calculation of the hex equivalent of the control frame. The CDM bits starting from the CTS bit are
considered for the calculation of the hex equivalent. For register Read/Write operation, bit CTS equals 1.
The following three bits are the IDS bits. As the BiSS-C interface master firmware implements only point-
to-point communication, only one slave is connected to the master. So the ID2..0 equals 000. Following
the IDS bits, the register must be addressed. This addressing occurs using the 7-bit addressing. The
register at 0x67 can be written in binary as 1100111. Excluding the start bit, all other bits are covered with
CRC. The bits from CTS to the 7-bit register address are used for calculating the 4-bit CRC. The
polynomial used for the CRC calculation is 0x13. For CRC calculation, the bits can be written as
10001100111. 4-bit CRC can be determined manually using the algorithm used to verify the 4-bit CRC
verification, which is described later in this document. After finding the CRC, the inverted CRC bits should
be appended with the other bits. As a result, the bit sequence 10001100111 the 4-bit CRC is 1101. As the
CRC bits are sent inverted on the line, the inverted CRC bits 0010. The inverted CRC bits are appended
with the previous bits that result in 100011001110010. The next three bits are R, W, and S bits. R bit is
high for the register read access. RWS equals 101. W bit is low and S stands for the start bit and is high.

The bit stream is 100011001110010101. Thirteen zeroes are appended including a stop bit. Another zero
is added to these bits to disable the sequential register access. The final bit sequence is
10001100111001010100000000000000. The hex equivalent of these bits 1000 1100 1110 0101 0100
0000 0000 0000 = 0x8CE54000.\ Read access at 0x67in hex = 0x8CE54000 is how the hex equivalents
for all the register accesses are determined.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU794A

Copy the data to TEMP_REG1

If TEMP_REG2 > 4

Start

Remove the leading Zeroes

Do 4 times Logical Left shit in
TEMP_REG1 (To append 4 zeroes

)

Find the bit number of left most 1
in TEMP_REG1 and save in

TEMP_REG2

Do XOR operation between
TEMP_REG1 and TEMP_REG3

Save result to TEMP_REG1

Load the CRC polynomial to
TEMP_REG3

Subtract 4 from TEMP_REG2 and
save in TEMP_REG2

Do Logical Left shit in
TEMP_REG3 for TEMP_REG2

number of times

Find the bit number of left most 1
in TEMP_REG1 and save in

TEMP_REG2

CRC result is the lowest 4 bits from
TEMP_REG1

Yes

No

System Implementation www.ti.com

28 TIDU794A–March 2015–Revised February 2016
Submit Documentation Feedback

Copyright © 2015–2016, Texas Instruments Incorporated

BiSS-C Interface Master Design Guide

3.2.4.2.12 4-Bit CRC Verification
The received control data is also protected with a 4-bit CRC. The received control data must be verified
using the algorithm used for finding the 4-bit CRC. For the verification of the control data, Figure 27 shows
three 32-bit temporary registers. Consider TEMP_REG1 for the data, TEMP_REG2 for the bit number of
left most 1 in the TEMP_REG1 register, and TEMP_REG3 for CRC polynomial. The CRC polynomial for
the control communication is 0x13.

Figure 27. Algorithm for 4-Bit CRC

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU794A

10011) 10101110000
10011
………………
00110110000

10011
………………

010000000
10011

………………
00011000

10011
………………

01011

www.ti.com System Implementation

29TIDU794A–March 2015–Revised February 2016
Submit Documentation Feedback

Copyright © 2015–2016, Texas Instruments Incorporated

BiSS-C Interface Master Design Guide

Consider 8 bits 01010111. After removing the leading zeroes, the 1010111 appends four 0s. The resulting
data is 10101110000. Perform the XOR operation between data and the CRC polynomial 0x13 (10011).

The CRC result is 1011. The slave sends the CRC bits inverted on the line. For verifying the CRC, the
CRC bits must be inverted and compared with the CRC bits sent by the slave. The inverted CRC bits for
the previous example are 0100. The BiSS-C interface master firmware checks whether the CRC bits
received by the master are equal to the CRC bits calculated. If both are not the same, firmware sets an
error flag CMD_CRC_ERR to inform the host.

3.2.4.2.13 Frequency Selection
After the completion of BiSS fame, the BiSS-C interface master reads the defined memory location, which
specifies the operational BiSS clock frequency provided by the host. When the cable length is short, the
host selects a higher frequency. When the cable is long, the host selects a lower frequency. In the current
firmware implementation, the host can chose from the list of available frequencies listed in Table 2.

3.2.4.2.14 SMA Calculation
The next task of the post processing section is to calculate the SMA. The firmware first checks the
availability of the SMA using a flag called SMA_FLAG. When the host or user selects a new frequency,
the SMA is disabled for the first four BiSS cycles. The SMA is enabled starting with the fifth BiSS cycle.
After the fourth BiSS cycle, enough sample points exist to calculate SMA. When the SMA is available, this
SMA calculation block sets the SMA_FLAG. The SMA_FLAG flag is used to decide whether to update
SMA in the Update SP with SMA block in the multiple frequency section. For a detailed description about
the calculation of SMA, see the Update SP with SMA block in the multiple frequency section.

3.2.4.2.15 Position Data Extraction
An important task of the firmware is extracting the position data. This extraction occurs in the post
processing section. After executing the multiple frequency section or optimized section for 10 MHz, the
position data bits, CDS bit, nE, nWn and 6 bits of CRC are stored in the result registers. The task of the
position data extraction block is to extract only the position data bits from the result registers and provide
the host with the position data result and verify it. The CDS bit is cleared using the CDS_BIT_NUMBER
variable. This CDS_BIT_NUMBER is the variable that includes the CDS bit position in the result register.
This variable is calculated in the start-up section. In the next step, the 6 bits of CRC and the nE, nW bits
are shifted out from the result register and the remaining bits are saved in a different result register. The
new result register contains only the position data. This data is stored into the defined memory location in
the shared memory by the firmware for informing host. The position data received by the BiSSC interface
master must be verified using the 6-bit CRC. For the calculation of 6-bit CRC, SB is not considered.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU794A

Copy the data to TEMP_REG1

If TEMP_REG2 >
6

Start

Remove the leading Zeroes

Do 6 times Logical Left shit in
TEMP_REG1 (To append 4

zeroes)

Find the bit number of left most 1
in TEMP_REG1 and save in

TEMP_REG2

Do XOR operation between
TEMP_REG1 and TEMP_REG3

Save result to TEMP_REG1

Load the CRC polynomial to
TEMP_REG3

Subtract 6 from TEMP_REG2
and save in TEMP_REG2

Do Logical Left shit in
TEMP_REG3 for TEMP_REG2

number of times

Find the bit number of left most 1
in TEMP_REG1 and save in

TEMP_REG2

CRC result is the lowest 6 bits
from TEMP_REG1

Yes

No

System Implementation www.ti.com

30 TIDU794A–March 2015–Revised February 2016
Submit Documentation Feedback

Copyright © 2015–2016, Texas Instruments Incorporated

BiSS-C Interface Master Design Guide

3.2.4.2.16 6-Bit CRC Verification
The 6-bit CRC is used for protecting the position data transmission. The CRC polynomial used is 0x43.
The algorithm used for the 6-bit CRC is similar to the 4-bit CRC verification. Figure 28 shows the 6-bit
CRC verification flow chart.

Figure 28. 6-Bit CRC Verification

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU794A

1000011) 10101110000
1000011
………………..
00101000000

1000011
…………….
001001100

1000011
………….
0001111

www.ti.com System Implementation

31TIDU794A–March 2015–Revised February 2016
Submit Documentation Feedback

Copyright © 2015–2016, Texas Instruments Incorporated

BiSS-C Interface Master Design Guide

Consider 00000000000101. Remove the leading 0s so the data equals 101. Append six 0s. The data
equals 101000000. Perform an XOR operation between data and the CRC polynomial 0x43 (1000011).

The CRC result is 001111. The slave sends the CRC bits inverted on the line. For verifying the CRC, the
CRC bits are inverted and then compared with the CRC bits sent by the slave. The resulting inverted CRC
bits for the example are 110000.

The BiSS-C interface master checks whether the CRC bits received by the master is equal to the CRC
bits calculated. If the master and CRC bits are not the same, the firmware sets an POS_CRC_ERR error
flag and also increments the CRC error counter CRC_ERR_COUNTER by 1.

3.2.4.2.17 Wait for Event
This block is used for waiting the event from the IEP timer. At this time, the event is not mapped to the
host processor. The IEP_CMP_STATUS_REG is read and the event status bit is used to check the
counter overflow. If the status bit is set, the firmware clears the status bit and starts the next position data
transmission.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU794A

System Implementation www.ti.com

32 TIDU794A–March 2015–Revised February 2016
Submit Documentation Feedback

Copyright © 2015–2016, Texas Instruments Incorporated

BiSS-C Interface Master Design Guide

3.2.5 Register Definition
Register definition shows the PRU register map. This register map has a header file that includes all the
register definitions used for the firmware. Table 8shows the register map used for the project.

Table 8. PRU Register Map

Status Oversampled Data R31
Not used GPO R30

Not used Call Register R29

Reserved for Multiplier with Optional Accumulation

R28
R27
R26
R25

Not used R24
NO_OF_CYCLES R23

PROCESS_TIME Not used SP_COUNTER R22
JUMP_TO_FREQ FREQ_SELECT CRC_ERR_COUNTER R21

CMD_INIT_COUNT R20
TIMEOUT_DURATION CDS_BIT_NUMBER CRC_ERR_WAR DATA_LENGTH R19

CDS_RESULT R18
CMD_REG R17
CRC_POLY R16
MASK_CRC R15

RESULT_REG3 R14
RESULT_REG2 R13
RESULT_REG1 R12
TEMP_REG_6 R11
TEMP_REG_5 R10
TEMP_REG_4 R9
TEMP_REG_3 R8
TEMP_REG_2 R7
TEMP_REG_1 R6

Not used BiSS_CLK_BIT PROCESS_TIME_MAX R5
CMD_BIT_PTR CRC_LENGTH RAW_DATA Error flags R4

TIME_DELAY R3
SMA Not used SHIFT_INDEX CLK_LENGTH R2

Reserved for MVI R1
Reserved R0

3.2.6 BiSS-C Hardware Interface
The physical data transmission in BiSS-C is done using the RS-485 standard. The data is transmitted as
differential signals using the RS-485 transceiver between the BiSS-C master and the encoder. The master
sends the clock to the BiSS-C encoder and the slave responds to this clock. The design uses two
differential signals for each of the lines (clock and data).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU794A

AM437X_PRU0_ENDAT0_OUTEN

VENDAT

AM437X_PRU0_ENDAT0_CLK

AM437X_PRU0_ENDAT0_OUT

MTRA_GNDDGND

V3_3D

DGND

MTRA_GND

V3_3D

DGND

V5_0DENCODV5_0D

V5_0DENCOD

MTRA_GND

V3_3D

V3_3D

V24_0MTR

PRU0_ENDAT0_CLK <19>

PRU0_ENDAT0_OUT <19>

AM437X_PRU0_ENDAT0_OUTEN <19>
AM437X_PRU0_ENDAT0_IN <10,19>

AM437X_MMC0_DAT2<10,19>

ENDAT_EN<19>

J10

43-01028

1
2
3
4
5
6
7
8

R422 DNI

C270

0.1uF

R423 0
C267
0.01uF

U55

SN65HVD78D

A
6

B
7

D
4

R
1

DE
3

RE
2

VCC
8

GND
5

U57

SN65HVD78D

A
6

B
7

D
4

R
1

DE
3

RE
2

VCC
8

GND
5

R512
120

R514 0

R428 0

FB17

150OHM800mA
1 2

C320
0.01uF

A
M

4
3

7
x

E
n

D
A

T

I
n

d
u

s
t
r
ia

l
E

V
M

U11-15

AM437X_ZDN

MCASP0_ACLKX/PRU0_ENDAT0_CLK
N24

MCASP0_FSX/PRU0_ENDAT0_OUT
N22

MCASP0_AXR0/PRU0_ENDAT0_OUTEN
H23

R427 DNI

R526 0

TP12 TP

R483

0

R513 0

R540 0

R493 0
R485

DNI

R519
10K

www.ti.com System Implementation

33TIDU794A–March 2015–Revised February 2016
Submit Documentation Feedback

Copyright © 2015–2016, Texas Instruments Incorporated

BiSS-C Interface Master Design Guide

3.2.6.1 RS-485 Transceiver
BiSS-C interface master and the BiSS encoder is connected using the RS-485 transceiver. According to
the BiSS protocol description, the RS-422 device can also be used for the physical layer. The RS-485
transceiver allows transmission up to a frequency of 10 MHz. Data is transmitted differentially over RS-
485. This transceiver has high noise immunity and long distance transmission capabilities. In the BiSS-C
interface master implementation, onboard SN65HVD78 RS-485 transceiver is used. The receiver line in
the RS-485 transceiver is enabled using the GPIO (GPIO5 [12]).

3.2.6.2 AM437x Pin-Multiplexing for BiSS-C Interface
The pin-multiplexing occurs through the gel script. Mainly two pins are used for the transmission of BiSS-C
frame. One pin is used for the clock (CLK) and the other for the slave data output (SLO). mcasp0_aclkx is
used for the SLO input, which is configured as the 28-bit shift register mode in PRU-ICSS. mcasp0_fsx is
used for the clock output, which is configured as the GPO in PRU-ICSS. Two more pins are used for
enabling the RS485 transceivers. Table 9 lists the pin-mux for BiSS-C interface.

Table 9. AM437x Pin Multiplexing for BiSS-C Interface

Pin Name Signal Name Mode Offset Function
mcasp0_aclkx pr0_pru0_gpi[0] 6 0x0990 SLO input to AM437x
mcasp0_fsx pr0_pru0_gpo[1] 5 0x0994 MA clock output to the

encoder
endat_en gpio5[12] 7 0x0a48 For enabling receive line

in RS485 transceiver

3.2.6.3 AM437x IDK Hardware Modifications
Hardware changes on the AM437x board are required to support the BiSS-C interface. For the receive
line, 28-bit shift register mode of PRU is used. For the 28-bit shift mode, PRU register R31 pin 0 must be
used [R31.0]. As the default, the R31.0 pin is used for ENDAT_CLK in AM437x. It must be modified to
support the 28-bit shift mode for the BiSS-C firmware. Perform the following modifications:
1. Connect AM437X_PRU0_ENDAT0_CLK (U11, N24) to U57, pin 1 through a blue wire.
2. Remove R428, R427, and R514.
3. Mount 0 Ω for R422.

Figure 29 shows a snapshot of these resistors from the schematics.

Figure 29. Hardware Modification for AM437x IDK

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU794A

Getting Started Firmware www.ti.com

34 TIDU794A–March 2015–Revised February 2016
Submit Documentation Feedback

Copyright © 2015–2016, Texas Instruments Incorporated

BiSS-C Interface Master Design Guide

4 Getting Started Firmware
To use the firmware, do as follows:
1. Assemble the PRU code using the free pasm tool at

https://github.com/beagleboard/am335x_pru_package.

NOTE: The pasm tool is built using Microsoft Visual Studio® and the pasm.exe file generates in the
am335x_pru_package-master/pru_sw/utils directory.

2. Copy the pasm.exe file into BiSS firmware folder.
3. Enter pasm.exe --V3 --L --b pru0_BiSS.p on the Windows® terminal to generate the PRU binary file for

BiSS firmware.

NOTE: The output of the assembler is a binary file that is used to download the code through CCS.

4. Install the latest version of CCS with the support for ARM platform from
http://processors.wiki.ti.com/index.php/Download_CCS.

5. Connect the BiSS encoder to the AM437x IDK.
6. Power on the board with 24-V supply.
7. Connect the TI XDS100v2 USB Emulator_0 to the board.
8. Open CCS.
9. Navigate to File→ New→ Target Configuration File (see Figure 30).

Figure 30. Creating the Target Configuration

10. Select the TI XDS100v2 USB Emulator_0 (see Figure 31).
11. Select the board or device as AM437x.
12. Save the device selection.
13. Click Target Configuration in the Advanced Setup tab.

Figure 31. Selecting the Device

14. Click M3_WakeupSS_1 from the window on the left side.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU794A
https://github.com/beagleboard/am335x_pru_package
http://www.ti.com/lit/pdf/http://processors.wiki.ti.com/index.php/Download_CCS

www.ti.com Getting Started Firmware

35TIDU794A–March 2015–Revised February 2016
Submit Documentation Feedback

Copyright © 2015–2016, Texas Instruments Incorporated

BiSS-C Interface Master Design Guide

15. Click the Bypass box.
16. Navigate to where you have saved the gel script.
17. Select the initialization script.
18. Click Cortex-A9 (see Figure 32).

Figure 32. Loading the Gel Script

19. Click the TI XDS100v2 USB Emulator_0.
20. Select JTAG TCLK Frequency (MHz) as Adaptive with user specified value.
21. Enter 15 MHz in the field Enter a value from 1.0 MHz to 30 MHz.
22. Save the target configuration file.

To connect the target, do as follows:
1. Right-click the target configuration file.
2. Select Launch Selected Configuration.

NOTE: You can view the Cortex-A9 core and four PRU cores in the target window

3. Right-click the Cortex-A9 core.
4. Click Connect Target.
5. Click System Reset (see Figure 33).
6. Click Pause.
7. Click CPU Reset (SW).

Figure 33. Connecting to the Cortex-A9 Processor

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU794A

Getting Started Firmware www.ti.com

36 TIDU794A–March 2015–Revised February 2016
Submit Documentation Feedback

Copyright © 2015–2016, Texas Instruments Incorporated

BiSS-C Interface Master Design Guide

To run the gel scripts, do as follows:
1. Click AM43xx System Initialization (see Figure 34).

Figure 34. Executing Gel Scripts

2. Click ICSS.

To load the PRU firmware to the PRU-ICSS_0, do as follows:
1. Right-click PRU_ICSS0_PRU0.
2. Select Connect Target.
3. Right-click Program_Memory.
4. Load the BiSS-C interface master firmware binary file (see Figure 35).

Figure 35. Loading Code into PRU Program Memory

5. Click Program_Memory.
6. Select PRU_Device _Memory.
7. Click Finish.

NOTE: Clicking Finish shows the shared memory view from the PRU

8. See Table 1 to find the length of the BiSS encoder data, the length of CRC_ERR_WAR, and
frequency.

9. Click Start to start the BiSS-C interface master firmware.
10. See Table 1 to find the results and status.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU794A

BiSS-C

Encoder

www.ti.com Test Setup

37TIDU794A–March 2015–Revised February 2016
Submit Documentation Feedback

Copyright © 2015–2016, Texas Instruments Incorporated

BiSS-C Interface Master Design Guide

5 Test Setup
The test setup included an AM437x IDK, BiSS encoders, and cable. For debugging, a PC with the JTAG
was used. An oscilloscope was used for measurements and screen shots. The encoder in the functional
test and performance test was produced by Wachendorff and has the following order number: WDGF58M
10 12 00 11 BI A B 2 1 T3. This 12-bit single-turn digital encoder has a BiSS interface. The supply voltage
can range from 3.5 V to 30 V. The encoder includes 2 meters of cable. For a cable length greater than 2
m, use Baumer IVO PVC cable (5 × 2 LiY 0.14 mm2). Figure 36 shows the test setup for the BiSS-C
interface master firmware.

Figure 36. Test Setup for BiSS-C Interface Master

NOTE: Not optimized for maximum reach.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU794A

49 µs 49 µs

BiSS CLK
frequency 1 MHz

BiSS CLK
frequency 1 MHz

BiSS CLK Line

SLO Line

Test Data www.ti.com

38 TIDU794A–March 2015–Revised February 2016
Submit Documentation Feedback

Copyright © 2015–2016, Texas Instruments Incorporated

BiSS-C Interface Master Design Guide

6 Test Data
Functional tests are performed with various cable lengths and supported frequencies. The design does not
support maximum cable length but supports all functions including line delay compensation, which is
required to support longer cables. To support maximum cable length, the design of the RS-485 transceiver
must be optimized. A higher-quality cable is required for maximum cable length. The following sections
contain screen shots from oscilloscope of the tests.

6.1 Screen Shots
Figure 37 shows a screen shot of transmission at 1 MHz in continuous mode.

Figure 37. BiSS Continuous Mode

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU794A

49 µs

Time Out
26 µs

www.ti.com Test Data

39TIDU794A–March 2015–Revised February 2016
Submit Documentation Feedback

Copyright © 2015–2016, Texas Instruments Incorporated

BiSS-C Interface Master Design Guide

Figure 38 shows a screen shot of transmission at 1-MHz BiSS clock frequency. The minimum time
required for the transmission is 49 μs.

Figure 38. Transmission at 1 MHz

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU794A

29 µs

ACK

SB

CDS

Position data
nE and nW

CRC

CDM

Test Data www.ti.com

40 TIDU794A–March 2015–Revised February 2016
Submit Documentation Feedback

Copyright © 2015–2016, Texas Instruments Incorporated

BiSS-C Interface Master Design Guide

Figure 39 shows a screen shot of transmission at maximum BiSS clock frequency (10 MHz). The
minimum time required for the transmission in the maximum frequency is 29 μs.

Figure 39. Transmission at 10 MHz

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU794A

www.ti.com Test Data

41TIDU794A–March 2015–Revised February 2016
Submit Documentation Feedback

Copyright © 2015–2016, Texas Instruments Incorporated

BiSS-C Interface Master Design Guide

6.2 Position Data Transmission Tests
Position data transmission tests were performed using various cable lengths with supported frequencies.
For testing, BiSS cycles were repeated 1000 times and the number of CRC errors and other parameters,
like line delay, were recorded. Table 10 lists the test cases and results.

Table 10. Position Data Transmission Test

No. Frequency
(MHz)

Cable Length
(mk)

No. of BiSS
Cycles

CRC Errors Line Delay (No.
of Clock
Cycles)

Remarks

1 1 2 1000 0 1 BiSS cycle time
= 49 µs

2 1 15 + 2 1000 0 1 BiSS cycle time
= 51.83 µs

3 1 25 + 2 1000 0 1 BiSS cycle time
= 51.73 µs

4 1 40 + 2 1000 0 1 BiSS cycle time
= 52.90 µs

5 1 65 + 2 1000 29 2 BiSS cycle time
= 54.10 µs

6 2 2 1000 0 1 BiSS cycle time
= 39.73 µs

7 2 15 + 2 1000 0 1 BiSS cycle time
= 39.33 µs

8 2 25 + 2 1000 0 2 BiSS cycle time
= 39.53 µs

9 2 40 + 2 1000 0 BiSS cycle time
= 39.80 µs

10 2 65 + 2 1000 0 3 BiSS cycle time
= 42.10 µs

11 5 2 1000 0 1 BiSS cycle time
= 31.18 µs

12 5 15 + 2 1000 0 3 BiSS cycle time
= 32.32 µs

13 5 25 + 2 1000 6 3 BiSS cycle time
= 32.82 µs

14 10 2 1000 1 4 BiSS cycle time
= 29.87 µs

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU794A

Test Data www.ti.com

42 TIDU794A–March 2015–Revised February 2016
Submit Documentation Feedback

Copyright © 2015–2016, Texas Instruments Incorporated

BiSS-C Interface Master Design Guide

6.3 Control Communication Tests
Control communication tests were performed with various frequencies. Table 11 lists the results of the
control communication tests. The following functional tests represent register definitions of specific
Wachendorff encoders. All tests are passed with different communication frequencies.

Table 11. Control Communication Test

No. Control Frame Read/Write Frequency (MHz) Control Data
Result (in Hex)

Remarks

1 Read at 0x44 Read 1 0 32-bit serial number
2 Read at 0x44 Read 2 0 32-bit serial number
3 Read at 0x44 Read 5 0 32-bit serial number
4 Read at 0x44 Read 10 0 32-bit serial number
5 Read at 0x45 Read 1 D9 32-bit serial number
6 Read at 0x45 Read 2 D9 32-bit serial number
7 Read at 0x45 Read 5 D9 32-bit serial number
8 Read at 0x45 Read 10 D9 32-bit serial number
9 Read at 0x46 Read 1 1 32-bit serial number
10 Read at 0x46 Read 2 1 32-bit serial number
11 Read at 0x46 Read 5 1 32-bit serial number
12 Read at 0x46 Read 10 1 32-bit serial number
13 Read at 0x47 Read 1 32 32-bit serial number
14 Read at 0x47 Read 2 32 32-bit serial number
15 Read at 0x47 Read 5 32 32-bit serial number
16 Read at 0x47 Read 10 32 32-bit serial number
17 Read at 0x60 Read 1 B 8-bit status
18 Read at 0x60 Read 2 B 8-bit status
19 Read at 0x60 Read 5 B 8-bit status
20 Read at 0x60 Read 10 B 8-bit status
21 Read at 0x67 Read 1 5F Internal temperature
22 Read at 0x67 Read 2 5F Internal temperature
23 Read at 0x67 Read 5 5F Internal temperature
24 Read at 0x67 Read 10 5F Internal temperature
25 Read at 0x68 Read 1 0 Error and warning

messages
26 Read at 0x68 Read 2 0 Error and warning

messages
27 Read at 0x68 Read 5 0 Error and warning

messages
28 Read at 0x68 Read 10 0 Error and warning

messages
29 Read at 0x78 Read 1 46 48-bit device ID
30 Read at 0x78 Read 2 46 48-bit device ID
31 Read at 0x78 Read 5 46 48-bit device ID
32 Read at 0x78 Read 10 46 48-bit device ID
33 Read at 0x79 Read 1 3A 48-bit device ID
34 Read at 0x79 Read 2 3A 48-bit device ID
35 Read at 0x79 Read 5 3A 48-bit device ID
36 Read at 0x79 Read 10 3A 48-bit device ID
37 Read at 0x7A Read 1 C0 48-bit device ID
38 Read at 0x7A Read 2 C0 48-bit device ID
39 Read at 0x7A Read 5 C0 48-bit device ID

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU794A

www.ti.com Test Data

43TIDU794A–March 2015–Revised February 2016
Submit Documentation Feedback

Copyright © 2015–2016, Texas Instruments Incorporated

BiSS-C Interface Master Design Guide

Table 11. Control Communication Test (continued)
No. Control Frame Read/Write Frequency (MHz) Control Data

Result (in Hex)
Remarks

40 Read at 0x7A Read 10 C0 48-bit device ID
41 Read at 0x7B Read 1 0C 48-bit device ID
42 Read at 0x7B Read 2 0C 48-bit device ID
43 Read at 0x7B Read 5 0C 48-bit device ID
44 Read at 0x7B Read 10 0C 48-bit device ID
45 Read at 0x7C Read 1 0 48-bit device ID
46 Read at 0x7C Read 2 0 48-bit device ID
47 Read at 0x7C Read 5 0 48-bit device ID
48 Read at 0x7C Read 10 0 48-bit device ID
49 Read at 0x7D Read 1 1 48-bit device ID
50 Read at 0x7D Read 2 1 48-bit device ID
51 Read at 0x7D Read 5 1 48-bit device ID
52 Read at 0x7D Read 10 1 48-bit device ID
53 Read at 0x7E Read 1 57 Manufacturer ID
54 Read at 0x7E Read 2 57 Manufacturer ID
55 Read at 0x7E Read 5 57 Manufacturer ID
56 Read at 0x7E Read 10 57 Manufacturer ID
57 Read at 0x7F Read 1 41 Manufacturer ID
58 Read at 0x7F Read 2 41 Manufacturer ID
59 Read at 0x7F Read 5 41 Manufacturer ID
60 Read at 0x7F Read 10 41 Manufacturer ID

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU794A

Unsupported Features www.ti.com

44 TIDU794A–March 2015–Revised February 2016
Submit Documentation Feedback

Copyright © 2015–2016, Texas Instruments Incorporated

BiSS-C Interface Master Design Guide

7 Unsupported Features
Limitations in the current design are described in the following sections.

7.1 CRC Supports Data Lengths Only Less Than 23 Bits
CRC is calculated only for the BiSS-C encoders with an accuracy of less than 23 bits. If the accuracy of
the encoder is greater than this limit, the value of CRC is invalid.

7.2 SMA is Not Available for 10 MHz
SMA is not available for 10 MHz but is available for all other frequencies supported by the BiSS-C
interface master firmware. In the 10-MHz block, SMA cannot be used due to the timing limitations. This
issue can be resolved using a look-up table with 256 entries in the shared memory. See the optimized
section for 10 MHz for the details for implementing this method.

7.3 Sequential Register Access in Control Communication
In the control communication, the sequential register access is not implemented. In the list of hex
equivalents for the control communication, the SB for the sequential control communication is not given
(that is, each register access stops with a stop bit).

8 Software Files
To download the software files for this reference design, see http://www.ti.com/tool/TIDEP-0022.

For the CCS gel script (GPIO, example configuration of the encoder) and the PRU-ICSS firmware, see
http://www.ti.com/lit/zip/tidc920.

9 References

1. AM4379 Sitara™ Processor product page (http://www.ti.com/product/am4379)
2. iCHaus home page (http://www.ichaus.de/)
3. BiSS Interface home page (http://www.ti.com/lit/pdf/http://www.biss-interface.com)
4. Moving Average wiki page (http://en.wikipedia.org/wiki/Moving_average)
5. Cycle redundancy check wiki page (http://en.wikipedia.org/wiki/Cyclic_redundancy_check)
6. Programmable Real-time Unit (PRU) Software Support Package tool page (http://www.ti.com/tool/pru-

swpkg)
7. CCS Download page (http://processors.wiki.ti.com/index.php/Download_CCS)
8. Interface to a 5-V BiSS Position Encoder Reference Design (http://www.ti.com/tool/TIDA-00175)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU794A
http://www.ti.com/tool/TIDEP-0022
http://www.ti.com/lit/zip/tidc920
http://www.ti.com/product/am4379
http://www.ichaus.de/
http://www.ti.com/lit/pdf/http://www.biss-interface.com
http://en.wikipedia.org/wiki/Moving_average
http://en.wikipedia.org/wiki/Cyclic_redundancy_check
http://www.ti.com/tool/pru-swpkg
http://www.ti.com/tool/pru-swpkg
http://processors.wiki.ti.com/index.php/Download_CCS
http://www.ti.com/tool/TIDA-00175

www.ti.com Revision History

45TIDU794A–March 2015–Revised February 2016
Submit Documentation Feedback

Copyright © 2015–2016, Texas Instruments Incorporated

Revision History

Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Original (March 2015) to A Revision ... Page

• Updated Figure 11... 8
• Added "PRU accesses shared memory through the PRU constant table entry C28. ICSS0 has no PRU shared memory at

location 0x0001.0000, therefore C28 points to 0x0000.0000 (PRU0 local memory)." ... 8
• Updated Memory Location column and Content column in Table 1. Structure in Shared Memory. 9
• Updated steps following "Perform the following modifications:" ... 33
• Updated Step 7. Changed GO to FINISH. ... 36

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU794A

IMPORTANT NOTICE FOR TI REFERENCE DESIGNS

Texas Instruments Incorporated ("TI") reference designs are solely intended to assist designers (“Buyers”) who are developing systems that
incorporate TI semiconductor products (also referred to herein as “components”). Buyer understands and agrees that Buyer remains
responsible for using its independent analysis, evaluation and judgment in designing Buyer’s systems and products.
TI reference designs have been created using standard laboratory conditions and engineering practices. TI has not conducted any
testing other than that specifically described in the published documentation for a particular reference design. TI may make
corrections, enhancements, improvements and other changes to its reference designs.
Buyers are authorized to use TI reference designs with the TI component(s) identified in each particular reference design and to modify the
reference design in the development of their end products. HOWEVER, NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL
OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY THIRD PARTY TECHNOLOGY
OR INTELLECTUAL PROPERTY RIGHT, IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right,
or other intellectual property right relating to any combination, machine, or process in which TI components or services are used.
Information published by TI regarding third-party products or services does not constitute a license to use such products or services, or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
TI REFERENCE DESIGNS ARE PROVIDED "AS IS". TI MAKES NO WARRANTIES OR REPRESENTATIONS WITH REGARD TO THE
REFERENCE DESIGNS OR USE OF THE REFERENCE DESIGNS, EXPRESS, IMPLIED OR STATUTORY, INCLUDING ACCURACY OR
COMPLETENESS. TI DISCLAIMS ANY WARRANTY OF TITLE AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT, QUIET POSSESSION, AND NON-INFRINGEMENT OF ANY THIRD PARTY
INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO TI REFERENCE DESIGNS OR USE THEREOF. TI SHALL NOT BE LIABLE
FOR AND SHALL NOT DEFEND OR INDEMNIFY BUYERS AGAINST ANY THIRD PARTY INFRINGEMENT CLAIM THAT RELATES TO
OR IS BASED ON A COMBINATION OF COMPONENTS PROVIDED IN A TI REFERENCE DESIGN. IN NO EVENT SHALL TI BE
LIABLE FOR ANY ACTUAL, SPECIAL, INCIDENTAL, CONSEQUENTIAL OR INDIRECT DAMAGES, HOWEVER CAUSED, ON ANY
THEORY OF LIABILITY AND WHETHER OR NOT TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, ARISING IN
ANY WAY OUT OF TI REFERENCE DESIGNS OR BUYER’S USE OF TI REFERENCE DESIGNS.
TI reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per
JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant
information before placing orders and should verify that such information is current and complete. All semiconductor products are sold
subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques for TI components are used to the extent TI
deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not
necessarily performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
Reproduction of significant portions of TI information in TI data books, data sheets or reference designs is permissible only if reproduction is
without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for
such altered documentation. Information of third parties may be subject to additional restrictions.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards that
anticipate dangerous failures, monitor failures and their consequences, lessen the likelihood of dangerous failures and take appropriate
remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in
Buyer’s safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed an agreement specifically governing such use.
Only those TI components that TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components that
have not been so designated is solely at Buyer's risk, and Buyer is solely responsible for compliance with all legal and regulatory
requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2016, Texas Instruments Incorporated

	BiSS-C Interface Master Design Guide
	1 Introduction
	2 System Overview
	2.1 BiSS Protocol
	2.1.1 Line-Delay Compensation
	2.1.2 Processing Time Request by Slave
	2.1.3 Control Communication

	2.2 Sitara AM437x Processor
	2.2.1 PRU-ICSS

	2.3 RS485 Transceiver

	3 System Implementation
	3.1 System Specifications
	3.2 Firmware Implementation
	3.2.1 PRU 28-Bit Shift Mode
	3.2.2 Supported Frequencies
	3.2.3 Software Files
	3.2.4 Firmware Architecture
	3.2.4.1 Start-Up Section
	3.2.4.2 Multiple Frequency Section

	3.2.5 Register Definition
	3.2.6 BiSS-C Hardware Interface
	3.2.6.1 RS-485 Transceiver
	3.2.6.2 AM437x Pin-Multiplexing for BiSS-C Interface
	3.2.6.3 AM437x IDK Hardware Modifications

	4 Getting Started Firmware
	5 Test Setup
	6 Test Data
	6.1 Screen Shots
	6.2 Position Data Transmission Tests
	6.3 Control Communication Tests

	7 Unsupported Features
	7.1 CRC Supports Data Lengths Only Less Than 23 Bits
	7.2 SMA is Not Available for 10 MHz
	7.3 Sequential Register Access in Control Communication

	8 Software Files
	9 References

	Revision History
	Important Notice

