
Demystifying digital
signal processing (DSP)
programming:
The ease in realizing
implementations with TI DSPs

Todd Hahn
Software Development Manager

Jonathan Humphreys
Software Senior Member Technical Staff

Andy Fritsch
Software and Tools Director

Debbie Greenstreet
Strategic Marketing

Texas Instruments

	 Demystifying digital signal processing (DSP) programming: 	 2	 March 2015
	 The ease in realizing implementations with TI DSPs

Overview

Introduced by Texas Instruments over thirty years ago, the digital signal processor
(DSP) has evolved in its implementation from a standalone processor to a multicore
processing element and has continued to extend in its range of applications. The
breadth of software development tools for the DSP has also expanded to accom­
modate diverse sets of programmers. From small, low power, yet “smart” devices with
applications such as voice and image recognition, to multicore, high-performance
compute platforms performing real-time data analytics, the opportunities to achieve
the low-power processing efficiencies of DSPs are nearly endless. The TI DSP has
benefited from a relatively unique tool suite evolution making it easy and effective for
the general programmer and the signal processing expert alike to quickly develop
their application code. This paper addresses how TI DSP users are able to achieve
the high performance afforded by the TI DSP architecture, in an efficient, easy-to-use
development environment.

Introduction:
The value of DSP

Initially developed to process audio, the early TI

DSP was quickly leveraged by engineers for a wide

variety of numerous applications. The use of a TI

DSP, whether standalone or as part of a System-on-

Chip (SoC) affords full software programmability and

all of the benefits of software-based products. While

essentially every algorithm or function that can be

processed on a DSP can be executed on a general-

purpose processor, the DSP, by design, performs

math more efficiently. While digital signal processing

functionality can certainly be implemented in FPGAs

and ASICs, these devices are best utilized on

applications that process data flow. Conversely,

applications requiring algorithms that spend a

majority of the time processing loops scale much

better in terms of size, power and performance

when implemented on DSPs compared to

hardware-based implementations. To put it simply,

Figure 1 depicts an array of applications/end equipment that benefit from the efficiencies of a DSP

	 Demystifying digital signal processing (DSP) programming: 	 3	 March 2015
	 The ease in realizing implementations with TI DSPs

TI’s DSPs offer a variety of efficiencies over other

software-programmable processors, particularly

for applications that include computation-intensive

functions, such as analytics, FFTs and matrix

math in a constrained environment. Be it machine

vision, biometric analysis, video surveillance, audio

processing, or data analytics, anywhere you find an

intelligent automated system you are likely to find a

DSP at the heart of it.

Designed for
performance
entitlement

Designed for high-performance processing of

digital signals, including real-time mathematical

computations of parallel data sets, the DSP CPU

architecture is optimized to achieve the end

application goals. TI’s TMS320C6000™ platform

of DSPs utilizes the very long instruction word

(VLIW) architecture to achieve this performance,

and affords lower space and power footprints to

implement compared to superscalar architectures.

As experienced software engineers know, the ability

to obtain the theoretical maximum performance

of a given CPU in an actual implementation is

not a given. The ability to reach full performance

entitlement with a given processor is a key

consideration in selecting new CPUs for use in an

application. Processor performance entitlement

is afforded in TI’s DSPs and TI’s silicon/software

design strategy is a key part of that this equation.

The process

TI was one of the first processor semiconductor

manufacturers to have the DSP silicon designed in

tandem with the DSP compiler. Enabling a cycle of

iterative CPU development, TI CPU hardware/silicon

architects, compiler designers and application

system experts work hand-in-hand from design

inception to product manufacturing. The systems

team, along with other TI business experts, select

applications and algorithms that represent a variety

of potential end applications of the processor.

Using TI’s compiler technology, these applications

and algorithms are then compiled and the results

analyzed by the team to determine where to make

modifications and improvements to the ISA and

memory system. This prototyping cycle is depicted

in Figure 2 and is repeated until the architecture

is optimized for performance and efficiency, and

the compiler can achieve that performance via C

and C++. Combined with a rapidly re-targetable

compiler and advanced compiler optimizations, this

collaborative strategy also enables the compiler to

effectively exploit the available performance of the

DSP from C and C++. Employing this strategy has

laid the ground work for TI to successfully develop

generations of products over the lifetime of the DSP

architecture, and as such, TI’s customers often

cite the compiler as being a key strength of their

development chain.

ISA

changes

Compile

and run

benchmarks

Analysis
Modify

compiler

Figure 2. TI DSP silicon, software, tools co-design
process results in an architecture that easily enables
high-performance programs

	 Demystifying digital signal processing (DSP) programming: 	 4	 March 2015
	 The ease in realizing implementations with TI DSPs

s = ii s cycles
ii cycles

iteration i iteration i

Non-software pipelined Software pipelined

Execution

time

Execution

time

iteration i+1 iteration i+1

iteration i+2 iteration i+2

{ { {

Software pipelining

Instruction-level parallelism is critical in achieving

real-time performance in TI’s VLIW DSP architecture,

and as such, software pipelining is a feature used to

hone the CPU architecture and ISA for entitlement.

Applications executed on DSPs commonly spend

a lot of time executing loops, and as such, loop

performance is critical to overall DSP processing

performance. The TI DSP compiler is able to

create instruction-level parallelism by overlapping

iterations of a loop, thereby software pipelining

them, as shown in Figure 3, which optimizes the

use of CPU functional units and thus improves

performance. The example in Figure 3 shows that,

without software pipelining, loops are scheduled so

that loop iteration i completes before iteration i+1

begins. Thus with software pipelining, as long as

correctness can be preserved, iteration i+1 can start

before iteration i finishes. This generally permits a

much higher utilization of the machine’s resources

than might be achieved from non-software-pipelined

scheduling techniques. In a software-pipelined loop,

even though a single-loop iteration might take s

cycles to complete, a new iteration is initiated every

ii cycles.

The TI DSPs have multiple functional units and

include a range of single instruction multiple

data (SIMD) instructions. These features enable

increased throughput per cycle and the TI compiler

is designed to take full advantage of these features.

In order to keep all eight functional units on the

C6000™ DSP busy, the compiler often employs

the technique of loop unrolling. Loop unrolling

duplicates the body of a loop so multiple iterations

are performed before branching back to the

top of the loop. When legal and profitable, the

compiler can perform loop unrolling and execute

multiple iterations at the same time, increasing the

utilization of the eight functional units and thereby

increasing performance. The compiler also employs

loop unrolling to automatically exploit the SIMD

instructions on the C6000 devices. The compiler

will unroll a loop to create the same-instruction,

multiple-data situation that allows the usage of

SIMD instructions, thereby exploiting throughput

available in the SIMD instructions and increasing

performance. While not always possible, these

techniques highlight how the TI DSP compiler works

to achieve optimal performance, in some cases

achieving a 16× algorithm speedup over a naïve

compiler translation of a natural C code routine.

Figure 3. Leveraging software pipelined loop for code execution efficiency

	 Demystifying digital signal processing (DSP) programming: 	 5	 March 2015
	 The ease in realizing implementations with TI DSPs

Application example

As discussed earlier, the breadth of DSP

applications have expanded over time. Already a

key element of a wireless base station architecture,

software architects looked to determine how

they could leverage more of the DSP’s low power

consumption and real-time performance to take

on more of the base station processing as wireless

standards evolve to even more low latency

requirements. Traditionally utilizing the DSP for

Layer 1, physical layer processing, base station

software architects began implementing some of

the Layer 2 functionality for LTE solutions on the

DSP in order to achieve the latency requirements.

Layer 2 processing includes a significant amount

of control code in the form of irregular loop-type

algorithms. Irregular loops can be difficult to

software pipeline because they contain complex,

compound conditions both within the loop as well

as at the exit condition, have unknown loop iteration

counts, and contain complex memory accesses

that make alias analysis difficult. As part of ongoing

DSP performance enhancements, the compiler

team, keeping close to customer activities, modified

the compiler’s ability to achieve high irregular loop

performance.

Achieving DSP
performance with ease

As many software programmers will attest, there

is a common software development paradox:

achieving solution performance versus the effort,

resources and time it takes to get there. This

performance versus schedule tradeoff has become

more amplified in today’s software application

environment, where the composition of the

electronic product design team is increasingly

in the software majority. Product schedule and

resources costs regularly weigh in on product

decisions. Hence, the ease of use of implementing

and achieving desired performance of a selected

processor is critical.

As mentioned previously, TI DSPs are co-designed

by the team of CPU architects, compiler designers

and system engineers, and their goal is not only to

achieve DSP performance entitlement but to enable

it in a realistic software environment with tools and

languages familiar to the software developers.

While historically the digital signal processor has

had its share of assembly-level programmers, the

TI DSP and its compiler are designed for use by the

common language of today’s software developers;

C/C++. It supports standardized programming

languages and extensions such as C99, C++,

common GCC extensions, OpenMP and OpenCL.

The TI DSP compiler and Code Composer Studio™

(CCStudio) IDE environment have a lot of inherent

features that enable the developer to achieve

efficient performance from the DSP code, and the

developer is afforded state-of-the-art development

tools, programming languages and extensions.

The second half of the developer’s challenge

is how to achieve this application efficiency in

a reasonable amount of time. We now explore

the various performance tools and optimization

features available to the DSP programmer from the

feature-rich C6000 compiler, in conjunction with

TI’s CCStudio integrated development environment

(IDE).

Function profiling

TI’s CCStudio IDE supports a feature called

function profiling that provides information on the

number of times functions are called, as well as

the inclusive and exclusive total cycle count each

function took to execute. This feature can be

invoked within CCStudio IDE using a hardware trace

analysis tool, and can be configured to profile all

	 Demystifying digital signal processing (DSP) programming: 	 6	 March 2015
	 The ease in realizing implementations with TI DSPs

functions or those within a certain address range.

Function profiling can be used early on in the code

analysis process to help determine function areas to

focus on to enhance performance. Figure 4 shows

an example summary view of a CCStudio IDE

function profile run.

Pragmas and restrict

The capability of the compiler to obtain critical

information from pragmas and use of the restrict

keyword further enhances the amount of tuning

features in the TI DSP programmers’ toolkit.

For example, as discussed earlier, performing

software pipelining is critical for optimal code

performance. An example of the commonly used

“MUST_ITERATE” pragma, which communicates to

the compiler the lower bound of loop trip count is

shown in Figure 5 below. An additional performance

enhancer, the “restrict” keyword is heavily utilized by

DSP programmers to communicate memory access

independence, as it can dramatically improve the

compiler’s ability to software pipeline a loop.

Performance advice

It is important to note that software programmers,

who are unfamiliar with DSP CPU architecture,

should not be afraid to develop solutions using

the TI DSP. Not only are all common language

extensions supported as mentioned, but the TI

compiler offers programming assistance in the

form of performance advice. At compilation time,

performance remarks can be enabled to provide

feedback and ideas for further code insight and

optimization. For example, if the programmer had

enabled performance remarks he or she might get

a warning message that the compiler couldn’t fully

Figure 4. CCStudio IDE Function Profiler Summary details that the program spends the majority of its time in
the function RecurseFunc, aiding the programmer to focus optimization efforts making RecurseFunc faster.

#pragma MUST_ITERATE(1000) // outer loop: trip count >= 1000

for (i = 0; i < large_value; i++)

{

#pragma MUST_ITERATE (1,4) // inner loop;: 1 <= trip count <= 4

for (j=0; j<small_value; j++)

{

<stuff for iter 1,j>

}

}

Figure 5. An example of the MUST_ITERATE pragma in use

	 Demystifying digital signal processing (DSP) programming: 	 7	 March 2015
	 The ease in realizing implementations with TI DSPs

void VECSUM_once(void *in1, void *in2, void out)
{
 unit64_t *restrict data1;
 unit64_t *restrict data2;
 unit64_t *restrict out1;
 int i;

 data1 = (unit64_t *)in1;
 data2 = (unit64_t *)in2;
 out1 = (uint64_t *)out;
#pragma MUST_ITERATE(1)
 for (i = 0; i < SIZE_VECSUM_IN; i+=4)
 {
 double data1A, data2A;
 double data1B, data2B;
 data1A = _amemd8(data1++);
 data1B = _amemd8(data1++);
 data2A = _amemd8(data2++);
 data2B = _amemd8(data2++);
 _amemd8(out1++)= _daddsp(data1A, data2A);
 _amemd8(out1++)= _daddsp(data1B, data2B);
 }
}

Figure 7. An example of compiler support of native vector types

Initial code

void VECSUM_newvec(float2 * restrict data1,
 float2 * restrict data2,
 float2 * restrict out1)
{
 int i;

#pragma MUST_ITERATE(1)
 for (i = 0; i < SIZE_VECSUM_IN; i+=4)
 {
 *out1++ = (*data1++) + (*data2++);
 *out1++ = (*data1++) + (*data2++);
 }
}

Adding two arrays of floats and taking
advantage of C66x’s DADDSP instruction

optimize a loop because it couldn’t determine if

two pointers point to the same object in memory.

However, if the programmer uses the following

annotation, this loop can be further optimized

by the compiler. Figure 6 depicts some example

suggestions emitted from the performance advice

feature.

Native vector types

Another performance feature of the C66x compiler

is the support of native vector types. Examples

of native vector types are int4 or float2, which are

built-in types for a vector of four ints and vector of

two floats, respectively. Being built-in types, they

can be used with C operators like plus and multiply

naturally. Native vector types allow the

C/C++ programmer to more naturally express

the ILP present in the algorithm and the SIMD

opportunities that are available. This mitigates the

need for vendor-specific C intrinsics or assembly

language. An example of native vector types used in

DSP code is shown in Figure 7.

– Command-line options: Should use –o3, should not use –g

– Function calls, switch stmt, etc. in loops disable pipelining – don’t
 use them

– Suggestions on the use of restrict keyword

– Suggestions on the use of MUST_ITERATE, _nassert()

Figure 6: Performance advice guides programmers on ways to improve DSP code

	 Demystifying digital signal processing (DSP) programming: 	 8	 March 2015
	 The ease in realizing implementations with TI DSPs

Performance vs. memory footprint

Not all software optimization is defined by runtime

speed or latency. Some applications may have

physical size, power and/or memory restrictions,

and may require trading off runtime performance

for overall code size. The TI DSP compiler has

an option (-m[0-3]) to indicate a small code size

preference and the compiler will subsequently

optimize code size over performance.

In addition to reduced memory footprints, lower

code size can improve performance by reducing

cache conflict and capacity misses. By compiling

non-performance critical code for reduced size,

cache memory can be better utilized, as code

is more likely to fit in the cache and less likely to

conflict with existing cached code.

Intrinsics

As the C6000 compiler continues to evolve,

performance optimization techniques are continually

enhanced. In most cases, the techniques described

so far are sufficient for achieving performance

entitlement; however the C6000 compiler not

only provides an easy programming environment

for developing high-performance code, but also

includes tools for advanced users to specialize

their code for maximum performance. One such

feature is the C6000 intrinsics, which allows the user

access to specific C6000 DSP instructions through

C in a natural way. By using built-in C functions

(intrinsics), the user has access to specialized DSP

capability that is not easily representable in the

native C language.

DSP tool suite
robustness

Last but not least, no discussion about the value of

a processor compiler would be complete without

the assessment of the compiler correctness itself.

That is, does the generated code correctly execute

as the developer specified. When one thinks

about the complexity of the compilation task, the

importance of robustness should be obvious. The

TI DSP compiler offers execution robustness in a

multitude of ways.

The TI DSP compiler is developed and produced

as formally and rigorously as all TI products, and

this begins with the development process. Industry

best practices are leveraged, along with functional,

design and source code reviews, as well as being

managed through a formal software configuration

system. A root cause analysis process is employed

for defects.

Every version of the TI DSP compiler is thoroughly

validated with in-house kernels, applications,

regressions, feature tests and unit tests, along with

all commercially available test suites before release.

The commercial suites include:

•	PlumHall C and C++

•	Perennial CVSA and C++VS

•	CodeSourcery C++ ARM® ABI test suite

•	Dinkumware proofer for C++

•	Nullstone optimizer test

•	ACE supertest

•	GNU torture suite

The DSP compiler process includes an automated

nightly validation and an automated release

validation process, both of which are run on a

powerful collection of servers, leveraging thousands

of processors to execute an extensive array of tests.

Since the compiler team works closely with TI’s

end equipment and systems teams, a large

amount of applications-type code is included in the

regression flow. This extends an additional level of

robustness to the compiler and an additional level

of assuredness to the programmer. TI’s reusable

and retargetable compiler infrastructure, developed

over nearly 30 years of DSP product development,

has been applied to and validated with tens of

diverse TI DSP architectures. Due to the wide variety

of applications and architectures the compiler

must support and has supported, the strategy of

reuse and retargetability results in a more robust

compiler, with high code reuse and code coverage.

It represents a significant amount of development

and support behind it due to nearly 30 years of DSP

product deployment.

Join the DSP
bandwagon

While no longer simply a standalone device,

the DSP continues to grow and expand in

function and application. Integrated as part of a

heterogeneous SoC, the DSP is rapidly finding a

home as a functional accelerator, along with more

general-purpose code running on an ARM, in

growing applications such as video surveillance,

high-performance computing and anything

requiring analytics algorithms. This is because

the power, cost and size efficiencies afforded by

the DSP architecture, along with its full software

programmability, make the DSP an ideal processor

choice for applications with intensive math

computations in constrained environments. The

TI DSP development tools support standardized

programming languages and extensions such as

C99, C++, common GCC extensions, OpenMP and

OpenCL, enabling a variety of software programmer

skill sets to leverage the performance efficiency of a

DSP, while enjoying the ease of use in getting such

a product to market quickly and effectively. The TI

DSP compiler strategy is committed to providing a

complete feature set and high-performance level, as

part of the overall TI DSP product line. Hundreds of

customers have successfully delivered differentiated

products to the market based on TI’s highly efficient

DSPs. Chances are, your application can benefit

from DSPs.

SPRY281© 2015 Texas Instruments Incorporated

Important Notice: The products and services of Texas Instruments Incorporated and its subsidiaries described herein are sold subject to TI’s standard
terms and conditions of sale. Customers are advised to obtain the most current and complete information about TI products and services before placing
orders. TI assumes no liability for applications assistance, customer’s applications or product designs, software performance, or infringement of patents.
The publication of information regarding any other company’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

C6000, Code Composer Studio and TMS320C6000 are trademarks of Texas Instruments. All trademarks are the property of their
respective owners.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://e2e.ti.com
http://www.ti.com/wirelessconnectivity

