
Demystifying digital 
signal processing (DSP) 
programming:  
The ease in realizing 
implementations with TI DSPs

Todd Hahn
Software Development Manager

Jonathan Humphreys
Software Senior Member Technical Staff

Andy Fritsch
Software and Tools Director

Debbie Greenstreet
Strategic Marketing
 
Texas Instruments



	 Demystifying digital signal processing (DSP) programming: 	 2	 March 2015
	 The ease in realizing implementations with TI DSPs

Overview

Introduced by Texas Instruments over thirty years ago, the digital signal processor 
(DSP) has evolved in its implementation from a standalone processor to a multicore 
processing element and has continued to extend in its range of applications. The 
breadth of software development tools for the DSP has also expanded to accom­
modate diverse sets of programmers. From small, low power, yet “smart” devices with 
applications such as voice and image recognition, to multicore, high-performance 
compute platforms performing real-time data analytics, the opportunities to achieve 
the low-power processing efficiencies of DSPs are nearly endless. The TI DSP has 
benefited from a relatively unique tool suite evolution making it easy and effective for 
the general programmer and the signal processing expert alike to quickly develop 
their application code. This paper addresses how TI DSP users are able to achieve 
the high performance afforded by the TI DSP architecture, in an efficient, easy-to-use 
development environment.

Introduction:  
The value of DSP

Initially developed to process audio, the early TI 

DSP was quickly leveraged by engineers for a wide 

variety of numerous applications. The use of a TI 

DSP, whether standalone or as part of a System-on-

Chip (SoC) affords full software programmability and 

all of the benefits of software-based products. While 

essentially every algorithm or function that can be 

processed on a DSP can be executed on a general-

purpose processor, the DSP, by design, performs 

math more efficiently. While digital signal processing 

functionality can certainly be implemented in FPGAs 

and ASICs, these devices are best utilized on 

applications that process data flow. Conversely, 

applications requiring algorithms that spend a 

majority of the time processing loops scale much 

better in terms of size, power and performance 

when implemented on DSPs compared to 

hardware-based implementations. To put it simply, 

Figure 1 depicts an array of applications/end equipment that benefit from the efficiencies of a DSP
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TI’s DSPs offer a variety of efficiencies over other 

software-programmable processors, particularly 

for applications that include computation-intensive 

functions, such as analytics, FFTs and matrix 

math in a constrained environment. Be it machine 

vision, biometric analysis, video surveillance, audio 

processing, or data analytics, anywhere you find an 

intelligent automated system you are likely to find a 

DSP at the heart of it. 

Designed for 
performance 
entitlement

Designed for high-performance processing of 

digital signals, including real-time mathematical 

computations of parallel data sets, the DSP CPU 

architecture is optimized to achieve the end 

application goals. TI’s TMS320C6000™ platform 

of DSPs utilizes the very long instruction word 

(VLIW) architecture to achieve this performance, 

and affords lower space and power footprints to 

implement compared to superscalar architectures. 

As experienced software engineers know, the ability 

to obtain the theoretical maximum performance 

of a given CPU in an actual implementation is 

not a given. The ability to reach full performance 

entitlement with a given processor is a key 

consideration in selecting new CPUs for use in an 

application. Processor performance entitlement 

is afforded in TI’s DSPs and TI’s silicon/software 

design strategy is a key part of that this equation.

The process

TI was one of the first processor semiconductor 

manufacturers to have the DSP silicon designed in 

tandem with the DSP compiler. Enabling a cycle of 

iterative CPU development, TI CPU hardware/silicon 

architects, compiler designers and application 

system experts work hand-in-hand from design 

inception to product manufacturing. The systems 

team, along with other TI business experts, select 

applications and algorithms that represent a variety 

of potential end applications of the processor. 

Using TI’s compiler technology, these applications 

and algorithms are then compiled and the results 

analyzed by the team to determine where to make 

modifications and improvements to the ISA and 

memory system. This prototyping cycle is depicted 

in Figure 2 and is repeated until the architecture 

is optimized for performance and efficiency, and 

the compiler can achieve that performance via C 

and C++. Combined with a rapidly re-targetable 

compiler and advanced compiler optimizations, this 

collaborative strategy also enables the compiler to 

effectively exploit the available performance of the 

DSP from C and C++. Employing this strategy has 

laid the ground work for TI to successfully develop 

generations of products over the lifetime of the DSP 

architecture, and as such, TI’s customers often 

cite the compiler as being a key strength of their 

development chain.

ISA

changes

Compile

and run

benchmarks

Analysis
Modify

compiler

Figure 2. TI DSP silicon, software, tools co-design 
process results in an architecture that easily enables 
high-performance programs
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Software pipelining

Instruction-level parallelism is critical in achieving 

real-time performance in TI’s VLIW DSP architecture, 

and as such, software pipelining is a feature used to 

hone the CPU architecture and ISA for entitlement. 

Applications executed on DSPs commonly spend 

a lot of time executing loops, and as such, loop 

performance is critical to overall DSP processing 

performance. The TI DSP compiler is able to 

create instruction-level parallelism by overlapping 

iterations of a loop, thereby software pipelining 

them, as shown in Figure 3, which optimizes the 

use of CPU functional units and thus improves 

performance. The example in Figure 3 shows that, 

without software pipelining, loops are scheduled so 

that loop iteration i completes before iteration i+1 

begins. Thus with software pipelining, as long as 

correctness can be preserved, iteration i+1 can start 

before iteration i finishes. This generally permits a 

much higher utilization of the machine’s resources 

than might be achieved from non-software-pipelined 

scheduling techniques. In a software-pipelined loop, 

even though a single-loop iteration might take s 

cycles to complete, a new iteration is initiated every 

ii cycles.

The TI DSPs have multiple functional units and 

include a range of single instruction multiple 

data (SIMD) instructions. These features enable 

increased throughput per cycle and the TI compiler 

is designed to take full advantage of these features. 

In order to keep all eight functional units on the 

C6000™ DSP busy, the compiler often employs 

the technique of loop unrolling. Loop unrolling 

duplicates the body of a loop so multiple iterations 

are performed before branching back to the 

top of the loop. When legal and profitable, the 

compiler can perform loop unrolling and execute 

multiple iterations at the same time, increasing the 

utilization of the eight functional units and thereby 

increasing performance. The compiler also employs 

loop unrolling to automatically exploit the SIMD 

instructions on the C6000 devices. The compiler 

will unroll a loop to create the same-instruction, 

multiple-data situation that allows the usage of 

SIMD instructions, thereby exploiting throughput 

available in the SIMD instructions and increasing 

performance. While not always possible, these 

techniques highlight how the TI DSP compiler works 

to achieve optimal performance, in some cases 

achieving a 16× algorithm speedup over a naïve 

compiler translation of a natural C code routine.

Figure 3. Leveraging software pipelined loop for code execution efficiency
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Application example

As discussed earlier, the breadth of DSP 

applications have expanded over time. Already a 

key element of a wireless base station architecture, 

software architects looked to determine how 

they could leverage more of the DSP’s low power 

consumption and real-time performance to take 

on more of the base station processing as wireless 

standards evolve to even more low latency 

requirements. Traditionally utilizing the DSP for 

Layer 1, physical layer processing, base station 

software architects began implementing some of 

the Layer 2 functionality for LTE solutions on the 

DSP in order to achieve the latency requirements. 

Layer 2 processing includes a significant amount 

of control code in the form of irregular loop-type 

algorithms. Irregular loops can be difficult to 

software pipeline because they contain complex, 

compound conditions both within the loop as well 

as at the exit condition, have unknown loop iteration 

counts, and contain complex memory accesses 

that make alias analysis difficult. As part of ongoing 

DSP performance enhancements, the compiler 

team, keeping close to customer activities, modified 

the compiler’s ability to achieve high irregular loop 

performance. 

Achieving DSP 
performance with ease

As many software programmers will attest, there 

is a common software development paradox: 

achieving solution performance versus the effort, 

resources and time it takes to get there. This 

performance versus schedule tradeoff has become 

more amplified in today’s software application 

environment, where the composition of the 

electronic product design team is increasingly 

in the software majority. Product schedule and 

resources costs regularly weigh in on product 

decisions. Hence, the ease of use of implementing 

and achieving desired performance of a selected 

processor is critical.

As mentioned previously, TI DSPs are co-designed 

by the team of CPU architects, compiler designers 

and system engineers, and their goal is not only to 

achieve DSP performance entitlement but to enable 

it in a realistic software environment with tools and 

languages familiar to the software developers. 

While historically the digital signal processor has 

had its share of assembly-level programmers, the 

TI DSP and its compiler are designed for use by the 

common language of today’s software developers; 

C/C++. It supports standardized programming 

languages and extensions such as C99, C++, 

common GCC extensions, OpenMP and OpenCL. 

The TI DSP compiler and Code Composer Studio™ 

(CCStudio) IDE environment have a lot of inherent 

features that enable the developer to achieve 

efficient performance from the DSP code, and the 

developer is afforded state-of-the-art development 

tools, programming languages and extensions. 

The second half of the developer’s challenge 

is how to achieve this application efficiency in 

a reasonable amount of time. We now explore 

the various performance tools and optimization 

features available to the DSP programmer from the 

feature-rich C6000 compiler, in conjunction with 

TI’s CCStudio integrated development environment 

(IDE).

Function profiling

TI’s  CCStudio IDE supports a feature called 

function profiling that provides information on the 

number of times functions are called, as well as 

the inclusive and exclusive total cycle count each 

function took to execute. This feature can be 

invoked within CCStudio IDE using a hardware trace 

analysis tool, and can be configured to profile all 



	 Demystifying digital signal processing (DSP) programming: 	 6	 March 2015
	 The ease in realizing implementations with TI DSPs

functions or those within a certain address range. 

Function profiling can be used early on in the code 

analysis process to help determine function areas to 

focus on to enhance performance. Figure 4 shows 

an example summary view of a CCStudio IDE 

function profile run.

Pragmas and restrict

The capability of the compiler to obtain critical 

information from pragmas and use of the restrict 

keyword further enhances the amount of tuning 

features in the TI DSP programmers’ toolkit. 

For example, as discussed earlier, performing 

software pipelining is critical for optimal code 

performance. An example of the commonly used 

“MUST_ITERATE” pragma, which communicates to 

the compiler the lower bound of loop trip count is 

shown in Figure 5 below. An additional performance 

enhancer, the “restrict” keyword is heavily utilized by 

DSP programmers to communicate memory access 

independence, as it can dramatically improve the 

compiler’s ability to software pipeline a loop.

Performance advice

It is important to note that software programmers, 

who are unfamiliar with DSP CPU architecture, 

should not be afraid to develop solutions using 

the TI DSP. Not only are all common language 

extensions supported as mentioned, but the TI 

compiler offers programming assistance in the 

form of performance advice. At compilation time, 

performance remarks can be enabled to provide 

feedback and ideas for further code insight and 

optimization. For example, if the programmer had 

enabled performance remarks he or she might get 

a warning message that the compiler couldn’t fully 

Figure 4. CCStudio IDE Function Profiler Summary details that the program spends the majority of its time in 
the function RecurseFunc, aiding the programmer to focus optimization efforts making RecurseFunc faster.

#pragma MUST_ITERATE(1000) // outer loop: trip count >= 1000

for (i = 0; i < large_value; i++)

{

#pragma MUST_ITERATE (1,4) // inner loop;:  1   <=  trip count <=  4

for (j=0; j<small_value; j++)

{

<stuff for iter 1,j>

}

}

Figure 5. An example of the MUST_ITERATE pragma in use
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void VECSUM_once(void *in1, void *in2, void out)
{
   unit64_t *restrict data1;
   unit64_t *restrict data2;
   unit64_t *restrict out1;
   int  i;

   data1 = (unit64_t * )in1;
   data2 = (unit64_t * )in2;
   out1 = (uint64_t * )out;
#pragma MUST_ITERATE(1)
   for (i = 0; i < SIZE_VECSUM_IN; i+=4)
   {
      double data1A, data2A;
      double data1B, data2B;
      data1A = _amemd8(data1++);
      data1B = _amemd8(data1++);
      data2A = _amemd8(data2++);
      data2B = _amemd8(data2++);
      _amemd8(out1++)= _daddsp(data1A, data2A);
      _amemd8(out1++)= _daddsp(data1B, data2B);
   }
}

Figure 7. An example of compiler support of native vector types

Initial code

void VECSUM_newvec(float2 * restrict data1,
                   float2 * restrict data2,
                   float2 * restrict out1)
{
   int   i;

#pragma MUST_ITERATE(1)
   for (i = 0; i < SIZE_VECSUM_IN; i+=4)
   {
        *out1++ = (*data1++) + (*data2++);
        *out1++ = (*data1++) + (*data2++);
   }
}

Adding two arrays of floats and taking 
advantage of C66x’s DADDSP instruction

optimize a loop because it couldn’t determine if 

two pointers point to the same object in memory. 

However, if the programmer uses the following 

annotation, this loop can be further optimized 

by the compiler. Figure 6 depicts some example 

suggestions emitted from the performance advice 

feature.

Native vector types

Another performance feature of the C66x compiler 

is the support of native vector types. Examples 

of native vector types are int4 or float2, which are 

built-in types for a vector of four ints and vector of 

two floats, respectively. Being built-in types, they 

can be used with C operators like plus and multiply 

naturally. Native vector types allow the  

C/C++ programmer to more naturally express 

the ILP present in the algorithm and the SIMD 

opportunities that are available. This mitigates the 

need for vendor-specific C intrinsics or assembly 

language. An example of native vector types used in 

DSP code is shown in Figure 7.

– Command-line options: Should use –o3, should not use –g

– Function calls, switch stmt, etc. in loops disable pipelining – don’t  
  use them

– Suggestions on the use of restrict keyword

– Suggestions on the use of MUST_ITERATE, _nassert()

Figure 6: Performance advice guides programmers on ways to improve DSP code
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Performance vs. memory footprint

Not all software optimization is defined by runtime 

speed or latency. Some applications may have 

physical size, power and/or memory restrictions, 

and may require trading off runtime performance 

for overall code size. The TI DSP compiler has 

an option (-m[0-3]) to indicate a small code size 

preference and the compiler will subsequently 

optimize code size over performance.

In addition to reduced memory footprints, lower 

code size can improve performance by reducing 

cache conflict and capacity misses. By compiling 

non-performance critical code for reduced size, 

cache memory can be better utilized, as code 

is more likely to fit in the cache and less likely to 

conflict with existing cached code.

Intrinsics

As the C6000 compiler continues to evolve, 

performance optimization techniques are continually 

enhanced. In most cases, the techniques described 

so far are sufficient for achieving performance 

entitlement; however the C6000 compiler not 

only provides an easy programming environment 

for developing high-performance code, but also 

includes tools for advanced users to specialize 

their code for maximum performance. One such 

feature is the C6000 intrinsics, which allows the user 

access to specific C6000 DSP instructions through 

C in a natural way. By using built-in C functions 

(intrinsics), the user has access to specialized DSP 

capability that is not easily representable in the 

native C language. 

DSP tool suite 
robustness

Last but not least, no discussion about the value of 

a processor compiler would be complete without 

the assessment of the compiler correctness itself. 

That is, does the generated code correctly execute 

as the developer specified. When one thinks 

about the complexity of the compilation task, the 

importance of robustness should be obvious. The 

TI DSP compiler offers execution robustness in a 

multitude of ways.

The TI DSP compiler is developed and produced 

as formally and rigorously as all TI products, and 

this begins with the development process. Industry 

best practices are leveraged, along with functional, 

design and source code reviews, as well as being 

managed through a formal software configuration 

system. A root cause analysis process is employed 

for defects.

Every version of the TI DSP compiler is thoroughly 

validated with in-house kernels, applications, 

regressions, feature tests and unit tests, along with 

all commercially available test suites before release. 

The commercial suites include:

•	PlumHall C and C++

•	Perennial CVSA and C++VS

•	CodeSourcery C++ ARM® ABI test suite

•	Dinkumware proofer for C++

•	Nullstone optimizer test

•	ACE supertest

•	GNU torture suite

The DSP compiler process includes an automated 

nightly validation and an automated release 

validation process, both of which are run on a 

powerful collection of servers, leveraging thousands 

of processors to execute an extensive array of tests.

Since the compiler team works closely with TI’s 

end equipment and systems teams, a large 

amount of applications-type code is included in the 

regression flow. This extends an additional level of 

robustness to the compiler and an additional level 

of assuredness to the programmer. TI’s reusable 



and retargetable compiler infrastructure, developed 

over nearly 30 years of DSP product development, 

has been applied to and validated with tens of 

diverse TI DSP architectures. Due to the wide variety 

of applications and architectures the compiler 

must support and has supported, the strategy of 

reuse and retargetability results in a more robust 

compiler, with high code reuse and code coverage.

It represents a significant amount of development 

and support behind it due to nearly 30 years of DSP 

product deployment. 

Join the DSP 
bandwagon

While no longer simply a standalone device, 

the DSP continues to grow and expand in 

function and application. Integrated as part of a 

heterogeneous SoC, the DSP is rapidly finding a 

home as a functional accelerator, along with more 

general-purpose code running on an ARM, in 

growing applications such as video surveillance, 

high-performance computing and anything 

requiring analytics algorithms. This is because 

the power, cost and size efficiencies afforded by 

the DSP architecture, along with its full software 

programmability, make the DSP an ideal processor 

choice for applications with intensive math 

computations in constrained environments. The 

TI DSP development tools support standardized 

programming languages and extensions such as 

C99, C++, common GCC extensions, OpenMP and 

OpenCL, enabling a variety of software programmer 

skill sets to leverage the performance efficiency of a 

DSP, while enjoying the ease of use in getting such 

a product to market quickly and effectively. The TI 

DSP compiler strategy is committed to providing a 

complete feature set and high-performance level, as 

part of the overall TI DSP product line. Hundreds of 

customers have successfully delivered differentiated 

products to the market based on TI’s highly efficient 

DSPs. Chances are, your application can benefit 

from DSPs.
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