
Product Overview
How to Develop With Flutter™ on the AM62 SK EVM

The Flutter™ software development kit from Google is used for simple interface programming. This product 
overview is written by TI and TI's Flutter third-party partner Klarälvdalens Datakonsult AB (KDAB), providing a 
step-by-step guide with instructions for initiating a Flutter-based development for human-machine interface (HMI) 
using the TI AM62x starter kit (SK) evaluation module (EVM).

Is Flutter the Right GUI Toolkit For Me?: An Engineer's Perspective

In today’s world, people tend to spend more time interacting with machines through a display screen rather 
than mechanically controlling machines. As an example, there is a graphical user interface (GUI) running on the 
main screen of many new automotive vehicles or home appliances. Through the GUI, users can control devices 
and activate features, such as music, radio, phone, temperature control, and more. Similarly, at the airport or 
at restaurants, the public can communicate with the companies through a self-serving kiosk. The kiosk runs 
a GUI on a display device and through the kiosk touchscreen, machines can fulfill the customer’s request. In 
summary, there is an increasing trend in the industry for the end consumer to interact with GUIs in a convenient 
and efficient manner to accomplish tasks.

From a developer’s perspective, creating an elegant GUI is vital because GUIs are one of the key components 
of communication between the customer and the product. There are many GUI frameworks to select from 
for running GUIs on embedded devices like the AM62. Each framework is unique and supports some of the 
following features:

1. Touch: Most GUI frameworks connect a display through resistive or capacitive touch support.
2. Aesthetics: GUIs with a more modern appearance or user-friendly features attracts more customers.
3. Hardware (HW) acceleration: Several embedded devices have a graphics processing unit (GPU) and are 

capable of performing various tasks like alpha blending, color conversion, scaling, and rotation. Crucially, the 
GUI utilizes the GPU for rendering complex scenes and offloads the central processing unit (CPU) for other 
tasks.

4. Memory: Developers are working with a limited memory footprint so developers must verify that the GUI and 
their software stack fits within the required footprint.

5. Scalability: Depending on the project, developers prefer to have a GUI that is portable across multiple 
platforms. Having a framework that scales across multiple devices and operating system (OS) can be 
beneficial.

6. License: Software licensing is also a key aspect to consider.

How to Enable Flutter on the AM6254 Arm® Processor Family

Although choosing a GUI framework is challenging, enabling and optimizing the GUI framework on an 
embedded platform is an even more demanding task. The objective of this product overview is to assist 
developers in enabling and optimizing the Flutter framework on TI platforms. Several modern GUIs are already 
enabled for TI’s next generation device (AM625). See the AM62x Design Gallery for more information. TI 
devices and the accompanying software development kit (SDK) offer flexibility to the developers to choose from 
any framework.

www.ti.com

SPRT761 – JUNE 2023
Submit Document Feedback

How to Develop With Flutter™ on the AM62 SK EVM 1

Copyright © 2023 Texas Instruments Incorporated

https://dev.ti.com/tirex/content/am62_design_gallery_01_00_00_00_eng__all/landing_page.html
https://www.ti.com
https://www.ti.com/lit/pdf/SPRT761
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRT761&partnum=AM62


Flutter has recently gained traction and has support for touch, includes contemporary GUI, contains smaller 
memory stack, and has a less stringent licensing clause. Developers that are interested in using Flutter and want 
to develop on TI’s embedded platform, can follow the process described in the following steps:

1. Complete the one-time setup prerequisites listed in the Processor SDK Linux for AM62x.
2. Enter the following commands, in order, into the console:

a. git clone https://git.ti.com/git/arago-project/oe-layersetup.git tisdk
b. cd tisdk
c. cp configs/processor-sdk/processor-sdk-08.05.00.21-config.txt configs/

flutter-config.txt
d. echo "meta-flutter,https://github.com/ardera/meta-flutter.git,dunfell,HEAD" 

>> configs/flutter-config.txt
e. ./oe-layertool-setup.sh -f configs/flutter-config.txt
f. cd build/
g. export TOOLCHAIN_PATH_ARMV7=$HOME/gcc-arm-9.2-2019.12-x86_64-arm-none-linux-

gnueabihf
h. export TOOLCHAIN_PATH_ARMV8=$HOME/gcc-arm-9.2-2019.12-x86_64-aarch64-none-

linux-gnu
i. echo 'IMAGE_INSTALL_append = " flutter-pi-runtimedebug flutter-gallery-

runtimedebug "' >> conf/local.conf
j. echo 'TOOLCHAIN_HOST_TASK:append = " nativesdk-flutter-sdk"' >> conf/

local.conf
k. echo 'FLUTTER_SDK_TAG = "stable"' >> conf/local.conf
l. echo 'SRCREV_pn-flutter-gallery-runtimedebug = 

"9776b9fd916635e10a32bd426fcd7a20c3841faf"' >> conf/local.conf
m. . conf/setenv
n. MACHINE=am62xx-evm bitbake-layers add-layer ../sources/meta-flutter
o. MACHINE=am62xx-evm bitbake tisdk-default-image

3. Perform a flash on an SD™ card with the following image:
• arago-tmp-external-arm-glibc/deploy/images/am62xx-evm/tisdk-base-image-

am62xx-evm.wic.xz
4. On the evaluation module run the following:

• flutter-pi /usr/share/flutter/gallery/ 

Application-Specific Performance Improvements For AM62xx

The GPU is a primary concern when optimizing Flutter applications for the AM62xx platform. The GPU on 
AM62x, AXE-1-16M, is a tile-based deferred renderer (TBDR), and functions in a different way than the more 
common immediate mode renderers (IMRs). For more information about TBDR, see the following A look at the 
PowerVR graphics architecture articles:

• Tile-based rendering
• Deferred rendering

The GPU architecture was developed to keep reading and writing to and from memory to a minimum, this is a 
fundamental part of the efficient operation. Some operations hinder the ability of the GPU to keep memory traffic 
to a minimum. The memory bandwidth of the GPU is also limited to provide low-power operation.

Imagination Technologies™ provides guidelines for performance optimizations on PowerVR hardware; however, 
many low-level details within the Flutter environment are not accessible. Recommendations for developing 
Flutter applications with AM62 hardware follow:

By default, all Flutter images have alpha-blending enabled. Avoid alpha blending, where possible. Alpha 
blending is when an image is combined with a background to provide a transparency effect. Use the following 
tips and tricks to keep alpha blending to a minimum.

• Where possible alpha blend without using the GPU. As an example, consider an image with a white 
background and a blue element on top. If the blue element is to appear transparent it is better to define 
the color as a lighter blue, rather than to give the blue element transparency and let the GPU determine the 
color.

www.ti.com

2 How to Develop With Flutter™ on the AM62 SK EVM SPRT761 – JUNE 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://software-dl.ti.com/processor-sdk-linux/esd/AM62X/08_05_00_21/exports/docs/linux/Overview_Building_the_SDK.html#prerequisites-one-time-setup
https://blog.imaginationtech.com/a-look-at-the-powervr-graphics-architecture-tile-based-rendering/
https://blog.imaginationtech.com/the-dr-in-tbdr-deferred-rendering-in-rogue/
https://docs.imgtec.com/starter-guides/powervr-architecture/topics/rules/the-golden-rules.html
https://www.ti.com
https://www.ti.com/lit/pdf/SPRT761
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRT761&partnum=AM62


• If alpha blending is unavoidable, keep the amount of pixels that need to be alpha blended to the minimum. 
Do not draw transparent objects or pixels, rather remove them completely. The next point gives an example 
of how to do this with images.

• This example by KDAB uses a image subsetting tool to remove all transparent pixels from an image. This 
makes sure that only visible pixels are sent off to the GPU for processing and reduces the amount of alpha 
blending that must be done. The README of the example describes how to use the image subsetting tool 
that is provided with the example.

• Draw the images without alpha blending by following the Flutter documentation and specifying 
BlendMode.src instead of the default BlendMode.srcOver. This specification is not possible through the 
default image widget and requires that a custom image widget be implemented using a CustomPainter.

Avoiding textures and images can also improve power efficiency and performance. The tiling GPU draws solid 
color triangles very efficiently. Working with elements that have already been rasterized often requires more 
memory bandwidth.

• Vertices or Paths can be drawn using a CustomPainter instead of using a image.
• Memory bandwidth requirements depend upon texture interpolation techniques. Using nearest-neighbor 

interpolation is the most efficient technique for saving bandwidth and using FilterQuality.none uses nearest-
neighbor interpolation. See the Flutter documentation for more information.

The following example shows how to draw an image without alpha blending and nearest-neighbor interpolation.

import 'package:flutter/rendering.dart';
import 'package:flutter/services.dart';
import 'package:flutter/widgets.dart';
import 'dart:ui' as ui;

/// Draw the background image with a custom painter.
class BackgroundImagePainter extends CustomPainter {
  BackgroundImage(this.image);

  final ui.Image image;

  final Paint imagePaint = Paint()
    ..blendMode = BlendMode.src // Disables alpha blending.
    ..filterQuality = FilterQuality.none; // Nearest neighbor interpolation.

  @override
  void paint(Canvas canvas, Size size) {
    canvas.drawImage(image, Offset.zero, imagePaint);
  }

  @override
  bool shouldRepaint(covariant CustomPainter oldDelegate) {
    return oldDelegate.image != image;
  }
}

class BackgroundImage extends StatelessWidget {
  const BackgroundImage({super.key, this.image});

  final ui.Image image;

  @override
  Widget build(BuildContext context) {
    return CustomPaint(
      painter: BackgroundImage(
        image: image
      ),
    );
  }
}

www.ti.com

SPRT761 – JUNE 2023
Submit Document Feedback

How to Develop With Flutter™ on the AM62 SK EVM 3

Copyright © 2023 Texas Instruments Incorporated

https://github.com/KDAB/cabin-demo
https://github.com/KDAB/cabin-demo/blob/main/README.md
https://api.flutter.dev/flutter/dart-ui/BlendMode.html
https://api.flutter.dev/flutter/rendering/CustomPainter-class.html
https://api.flutter.dev/flutter/dart-ui/Vertices-class.html
https://api.flutter.dev/flutter/dart-ui/Path-class.html
https://api.flutter.dev/flutter/rendering/CustomPainter-class.html
https://api.flutter.dev/flutter/dart-ui/FilterQuality.html
https://www.ti.com
https://www.ti.com/lit/pdf/SPRT761
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRT761&partnum=AM62


Summary

GUIs are an essential aspect of interaction with machines. Selecting an appropriate GUI can be problematic but 
regardless of the GUIs chosen by the developer, TI’s next generation device, the AM62x, is capable of running 
any modern GUI. For additional information, see the Flutter on the TI AM6254 demonstration.

About KDAB

KDAB helps customers in any stage of their product development cycle from planning and architecture over 
full-stack development to modern development processes, tooling, and continuous integration. When it comes 
to embedded devices, KDAB provides particular in-depth expertise in all parts of the software stack, especially 
the operating system (usually Embedded Linux™), the UI framework (Qt, Flutter and others), and performance 
optimization on a given hardware.

Authors

KRUNAL BHARGAV is a System Application Engineer at TI where he primarily supports graphics and display. 
Krunal has been with TI since 2017 and is involved in designing and supporting products in Embedded HMI 
Systems. Krunal earned his Master's degree from the New Jersey Institute of Technology, New Jersey, USA.

HANNES WINKLER is a software engineer for KDAB since 2021 and bachelor student of computer science at 
Otto-von-Guericke Universität Magdeburg. He is the author of flutter-pi, a Flutter engine embedder for embedded 
Linux, and contributor of some Flutter engine and tool features.

www.ti.com

4 How to Develop With Flutter™ on the AM62 SK EVM SPRT761 – JUNE 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.youtube.com/watch?v=9Fed443nYxk
https://www.ti.com
https://www.ti.com/lit/pdf/SPRT761
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRT761&partnum=AM62


IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE 
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” 
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY 
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD 
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate 
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable 
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an 
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license 
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you 
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these 
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with 
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for 
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2023, Texas Instruments Incorporated

https://www.ti.com/legal/terms-conditions/terms-of-sale.html
https://www.ti.com

