SN74HCS240 JAJSN34A - JULY 2021 - REVISED OCTOBER 2021 # SN74HCS240 シュミット・トリガ入力と 3 ステート出力を備えたオクタル反 転ライン・ドライバ # 1 特長 - 広い動作電圧範囲:2V~6V - シュミット・トリガ入力により低速またはノイズの多い入力 信号に対応 - 低消費電力 - I_{CC}: 100nA (標準値) - 入力リーク電流:±100nA (標準値) - 6V で ±7.8mA の出力駆動能力 - 広い周囲温度範囲:-40℃~+125℃、Tム # 2 アプリケーション - ・ デジタル信号の有効化 / 無効化 - 遅い入力信号またはノイズの多い入力信号のノイズの 除去 - コントローラ・リセット時の信号保持 - スイッチのデバウンス # 3 概要 このデバイスは、3 ステート出力とシュミット・トリガ入力を備えた 8 つの独立した反転ライン・ドライバで構成されています。各チャネルはブール関数 Y = Ā を正論理で実行します。チャネルは 4 つ 1 組に分けられ、各組を 1 本の OE ピンで制御できます。対応する OE ピンに HIGH を印加することで、出力をハイ・インピーダンス状態にできます。 ## 製品情報 | 部品番号 | パッケージ ⁽¹⁾ | 本体サイズ (公称) | | | |---------------|----------------------|-----------------|--|--| | SN74HCS240RKS | VQFN (20) | 4.50mm × 2.50mm | | | (1) 利用可能なすべてのパッケージについては、このデータシートの 末尾にある注文情報を参照してください。 **Benefits of Schmitt-trigger inputs** # **Table of Contents** | 1 特長 1 | 8.3 Feature Description | |---------------------------------------|---| | 2 アプリケーション1 | 8.4 Device Functional Modes10 | | 3 概要1 | 9 Application and Implementation1 | | 4 Revision History | 9.1 Application Information1 | | 5 Pin Configuration and Functions | 9.2 Typical Application11 | | 6 Specifications4 | 10 Power Supply Recommendations14 | | 6.1 Absolute Maximum Ratings4 | 11 Layout14 | | 6.2 ESD Ratings 4 | 11.1 Layout Guidelines14 | | 6.3 Recommended Operating Conditions4 | 11.2 Layout Example14 | | 6.4 Thermal Information4 | 12 Device and Documentation Support15 | | 6.5 Electrical Characteristics5 | 12.1 Documentation Support15 | | 6.6 Switching Characteristics5 | 12.2 Receiving Notification of Documentation Updates 15 | | 6.7 Operating Characteristics | 12.3 サポート・リソース15 | | 6.8 Typical Characteristics | 12.4 Trademarks15 | | 7 Parameter Measurement Information8 | 12.5 Electrostatic Discharge Caution15 | | 8 Detailed Description9 | 12.6 Glossary15 | | 8.1 Overview | 13 Mechanical, Packaging, and Orderable | | 8.2 Functional Block Diagram 9 | Information16 | # **4 Revision History** 資料番号末尾の英字は改訂を表しています。その改訂履歴は英語版に準じています。 | Changes from Revision * (July 2021) to Revision A (October 2021) | Page | |--|------| | • データシートを「事前情報」から「量産データ」に変更 | 0 | # **5 Pin Configuration and Functions** RKS Package 20-Pin VQFN Top View # **Pin Functions** | PIN | | I/O ⁽¹⁾ | DESCRIPTION | |-----------------|-----|--------------------|--| | NAME | NO. | 1/0(1) | DESCRIPTION | | 1 OE | 1 | I | Bank 1, output enable, active low | | 1A1 | 2 | I | Bank 1, channel 1 input | | 2Y4 | 3 | 0 | Bank 2, channel 4 output | | 1A2 | 4 | I | Bank 1, channel 2 input | | 2Y3 | 5 | 0 | Bank 2, channel 3 output | | 1A3 | 6 | I | Bank 1, channel 3 input | | 2Y2 | 7 | 0 | Bank 2, channel 2 output | | 1A4 | 8 | I | Bank 1, channel 4 input | | 2Y1 | 9 | 0 | Bank 2, channel 1 output | | GND | 10 | _ | Ground | | 2A1 | 11 | I | Bank 2, channel 1 input | | 1Y4 | 12 | 0 | Bank 1, channel 4 output | | 2A2 | 13 | I | Bank 2, channel 2 input | | 1Y3 | 14 | 0 | Bank 1, channel 3 output | | 2A3 | 15 | I | Bank 2, channel 3 input | | 1Y2 | 16 | 0 | Bank 1, channel 2 output | | 2A4 | 17 | I | Bank 2, channel 4 input | | 1Y1 | 18 | 0 | Bank 1, channel 1 output | | 2 OE | 19 | I | Bank 2, output enable, active low | | V _{CC} | 20 | _ | Positive supply | | Thermal Pad | | _ | The thermal pad can be connected to GND or left floating. Do not connect to any other signal or supply | (1) Signal Types: I = Input, O = Output, I/O = Input or Output. # **6 Specifications** # **6.1 Absolute Maximum Ratings** over operating free-air temperature range (unless otherwise noted)(1) | | | | MIN | MAX | UNIT | |------------------|--|---|------|-----|------| | V _{CC} | Supply voltage | | -0.5 | 7 | V | | I _{IK} | Input clamp current ⁽²⁾ $V_1 < -0.5 \text{ V or } V_1 > V_{CC} + 0.5 \text{ V}$ | | | ±20 | mA | | I _{OK} | Output clamp current ⁽²⁾ | $V_{O} < -0.5 \text{ V or } V_{O} > V_{CC} + 0.5 \text{ V}$ | | ±20 | mA | | Io | Continuous output current | V _O = 0 to V _{CC} | | ±35 | mA | | I _{CC} | Continuous current through V _{CC} or GND | | | ±70 | mA | | T_{J} | Junction temperature ⁽³⁾ | | | 150 | °C | | T _{stg} | Storage temperature | | -65 | 150 | °C | ⁽¹⁾ Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. #### 6.2 ESD Ratings | | | | VALUE | UNIT | |--------------------|-------------------------|---|-------|------| | V _(ESD) | Electrostatic discharge | Human-body model (HBM), per ANSI/ESDA/
JEDEC JS-001 ⁽¹⁾ | ±4000 | V | | | | Charged-device model (CDM), per ANSI/ESDA/
JEDEC JS-002 ⁽²⁾ | ±1500 | V | ⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. #### **6.3 Recommended Operating Conditions** over operating free-air temperature range (unless otherwise noted) | | | MIN | NOM | MAX | UNIT | |-----------------|---------------------|-----|-----|-----------------|------| | V _{CC} | Supply voltage | 2 | 5 | 6 | V | | VI | Input voltage | 0 | | V _{CC} | V | | Vo | Output voltage | 0 | | V _{CC} | V | | T _A | Ambient temperature | -55 | | 125 | °C | #### **6.4 Thermal Information** | | | SN74HCS240 | | |-----------------------|----------------------------------------------|------------|------| | | THERMAL METRIC ⁽¹⁾ | RKS (VQFN) | UNIT | | | | 20 PINS | - | | R _{0JA} | Junction-to-ambient thermal resistance | 83.2 | °C/W | | R _{0JC(top)} | Junction-to-case (top) thermal resistance | 82.6 | °C/W | | $R_{\theta JB}$ | Junction-to-board thermal resistance | 57.4 | °C/W | | Ψ_{JT} | Junction-to-top characterization parameter | 14.5 | °C/W | | Ψ_{JB} | Junction-to-board characterization parameter | 56.4 | °C/W | Submit Document Feedback ⁽²⁾ The input and output voltage ratings may be exceeded if the input and output current ratings are observed. ⁽³⁾ Guaranteed by design. ⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. | | | SN74HCS240 | | | |------------------------|----------------------------------------------|------------|------|--| | | THERMAL METRIC(1) | RKS (VQFN) | UNIT | | | | | 20 PINS | | | | R ₀ JC(bot) | Junction-to-case (bottom) thermal resistance | 40.0 | °C/W | | ⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report. #### 6.5 Electrical Characteristics over operating free-air temperature range; typical values measured at T_A = 25°C (unless otherwise noted). | | PARAMETER | TEST CC | NDITIONS | V _{cc} | MIN | TYP | MAX | UNIT | |-----------------|-------------------------------------------------|----------------------------|---------------------------|-----------------|-----------------------|-------------------------|-------|------| | | | | | 2 V | 0.7 | | 1.5 | | | V_{T+} | Positive switching threshold | | | 4.5 V | 1.7 | | 3.15 | V | | | | | | 6 V | 2.1 | | 4.2 | | | | | | | 2 V | 0.3 | | 1 | | | V_{T-} | Negative switching threshold | | | 4.5 V | 0.9 | | 2.2 | V | | | | | | 6 V | 1.2 | | 3 | | | | | | | 2 V | 0.2 | | 1 | | | ΔV_{T} | Hysteresis (V _{T+} - V _{T-}) | | | 4.5 V | 0.4 | | 1.4 | V | | | | | | 6 V | 0.6 | | 1.6 | | | | | | I _{OH} = -20 μA | 2 V to 6 V | V _{CC} - 0.1 | V _{CC} - 0.002 | | | | V_{OH} | High-level output voltage | $V_I = V_{IH}$ or V_{IL} | I _{OH} = -6 mA | 4.5 V | 4 | 4.3 | | V | | | | | I _{OH} = -7.8 mA | 6 V | 5.4 | 5.75 | | | | | | | I _{OL} = 20 μA | 2 V to 6 V | | 0.002 | 0.1 | | | V_{OL} | Low-level output voltage | $V_I = V_{IH}$ or V_{IL} | I _{OL} = 6 mA | 4.5 V | | 0.18 | 0.3 | V | | | | | I _{OL} = 7.8 mA | 6 V | | 0.22 | 0.33 | | | I _I | Input leakage current | $V_I = V_{CC}$ or 0 | | 6 V | | ±100 | ±1000 | nA | | l _{OZ} | Off-state (high-impedance state) output current | $V_{O} = V_{CC}$ or 0 | | 6 V | | ±0.01 | ±2 | μA | | I _{CC} | Supply current | $V_I = V_{CC}$ or 0, I_C | _D = 0 | 6 V | | 0.1 | 2 | μA | | Ci | Input capacitance | | | 2 V to 6 V | | | 5 | pF | ## **6.6 Switching Characteristics** over operating free-air temperature range; typical values measured at T_A = 25°C (unless otherwise noted). See Parameter Measurement Information. C_L = 50 pF. | | PARAMETER | FROM (INPUT) | TO (OUTPUT) | V _{CC} | MIN | TYP | MAX | UNIT | |------------------|-------------------|--------------|-------------|-----------------|-----|-----|-----|------| | | | | | 2 V | | 13 | 45 | | | t_{pd} | Propagation delay | Α | Υ | 4.5 V | | 7 | 18 | ns | | | | | | 6 V | | 6 | 16 | | | | | | | 2 V | | 15 | 44 | ns | | t _{en} | Enable time | ŌĒ | Y | 4.5 V | | 7 | 22 | | | | | | | 6 V | | 6 | 18 | | | | | OE | Y | 2 V | | 12 | 30 | ns | | t _{dis} | Disable time | | | 4.5 V | | 9 | 20 | | | | | | | 6 V | | 8 | 19 | | | | | | Any | 2 V | | 9 | 16 | | | t _t | Transition-time | | | 4.5 V | | 5 | 9 | ns | | | | | | 6 V | | 4 | 8 | | # **6.7 Operating Characteristics** over operating free-air temperature range; typical values measured at $T_A = 25$ °C (unless otherwise noted). | | 0 1 0 7 71 | | <u>\</u> | | | |-----------------|---------------------------------------|-----------------|----------|-------|------| | | PARAMETER | TEST CONDITIONS | MIN T | P MAX | UNIT | | C _{pd} | Power dissipation capacitance per gar | te No load | | 20 | pF | Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated # **6.8 Typical Characteristics** $T_A = 25^{\circ}C$ 図 6-1. Output Driver Resistance in LOW State 図 6-3. Supply Current Across Input Voltage, 2-, 2.5-, and 3.3-V Supply 図 6-2. Output Driver Resistance in HIGH State 図 6-4. Supply Current Across Input Voltage, 4.5-, 5-, and 6-V Supply ## 7 Parameter Measurement Information Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, Z_O = 50 Ω , t_t < 2.5 ns. For clock inputs, f_{max} is measured when the input duty cycle is 50%. The outputs are measured one at a time with one input transition per measurement. (1) C_L includes probe and test-fixture capacitance. 図 7-1. Load Circuit for 3-State Outputs 図 7-3. Voltage Waveforms Propagation Delays (1) The greater between t_{PLH} and t_{PHL} is the same as t_{pd}. #### 図 7-2. Voltage Waveforms Propagation Delays (1) The greater between t_r and t_f is the same as t_t. 図 7-4. Voltage Waveforms, Input and Output Transition Times # 8 Detailed Description #### 8.1 Overview The SN74HCS240 contains 8 individual high speed CMOS inverters with Schmitt-trigger inputs and 3-state outputs. Each inverter performs the boolean logic function $xYn = \overline{xAn}$, with x being the bank number and n being the channel number. Each output enable $(x\overline{OE})$ controls four inverters. When the $x\overline{OE}$ pin is in the low state, the outputs of all inverters in the bank x are enabled. When the $x\overline{OE}$ pin is in the high state, the outputs of all inverters in the bank x are disabled output are placed into the high-impedance state. To ensure the high-impedance state during power up or power down, both \overline{OE} pins should be tied to V_{CC} through a pull-up resistor; the minimum value of the resistor is determined by the current sinking capability of the driver and the leakage of the pin as defined in the *Electrical Characteristics* table. #### 8.2 Functional Block Diagram 図 8-1. Logic Diagram (Positive Logic) for SN74HCS240 #### **8.3 Feature Description** #### 8.3.1 Balanced CMOS 3-State Outputs This device includes balanced CMOS 3-State outputs. The three states that these outputs can be in are driving high, driving low, and high impedance. The term "balanced" indicates that the device can sink and source similar currents. The drive capability of this device may create fast edges into light loads so routing and load conditions should be considered to prevent ringing. Additionally, the outputs of this device are capable of driving larger currents than the device can sustain without being damaged. It is important for the output power of the device to be limited to avoid damage due to overcurrent. The electrical and thermal limits defined in the *Absolute Maximum Ratings* must be followed at all times. When placed into the high-impedance mode, the output will neither source nor sink current, with the exception of minor leakage current as defined in the *Electrical Characteristics* table. In the high-impedance state, the output voltage is not controlled by the device and is dependent on external factors. If no other drivers are connected to the node, then this is known as a floating node and the voltage is unknown. A pull-up or pull-down resistor can be connected to the output to provide a known voltage at the output while it is in the high-impedance state. The value of the resistor will depend on multiple factors, including parasitic capacitance and power consumption limitations. Typically, a 10 k Ω resistor can be used to meet these requirements. Unused 3-state CMOS outputs should be left disconnected. #### 8.3.2 CMOS Schmitt-Trigger Inputs This device includes inputs with the Schmitt-trigger architecture. These inputs are high impedance and are typically modeled as a resistor in parallel with the input capacitance given in the *Electrical Characteristics* table from the input to ground. The worst case resistance is calculated with the maximum input voltage, given in the *Absolute Maximum Ratings* table, and the maximum input leakage current, given in the *Electrical Characteristics* table, using Ohm's law $(R = V \div I)$. The Schmitt-trigger input architecture provides hysteresis as defined by ΔV_T in the *Electrical Characteristics* table, which makes this device extremely tolerant to slow or noisy inputs. While the inputs can be driven much slower than standard CMOS inputs, it is still recommended to properly terminate unused inputs. Driving the inputs with slow transitioning signals will increase dynamic current consumption of the device. For additional information regarding Schmitt-trigger inputs, please see Understanding Schmitt Triggers. #### 8.3.3 Clamp Diode Structure The inputs and outputs to this device have both positive and negative clamping diodes as depicted in Electrical Placement of Clamping Diodes for Each Input and Output. #### **CAUTION** Voltages beyond the values specified in the *Absolute Maximum Ratings* table can cause damage to the device. The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed. 図 8-2. Electrical Placement of Clamping Diodes for Each Input and Output #### 8.4 Device Functional Modes Function table lists the functional modes of the SN74HCS240. 表 8-1. Function Table | INPUTS ⁽¹⁾ | OUTPUTS | | | | | |-----------------------|---------|---|--|--|--| | ŌĒ | A | Υ | | | | | L | L | Н | | | | | L | Н | L | | | | | Н | X | Z | | | | (1) H = High Voltage Level, L = Low Voltage Level, X = Don't Care, Z = High-Impedance State Submit Document Feedback # 9 Application and Implementation #### Note Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality. ## 9.1 Application Information The SN74HCS240 can be used to drive signals over relatively long traces or transmission lines. In order to reduce ringing caused by impedance mismatches between the driver, transmission line, and receiver, a series damping resistor placed in series with the transmitter's output can be used. The plot in the *Application Curve* section shows the received signal with three separate resistor values. Just a small amount of resistance can make a significant impact on signal integrity in this type of application. #### 9.2 Typical Application 図 9-1. Typical application block diagram #### 9.2.1 Design Requirements #### 9.2.1.1 Power Considerations Ensure the desired supply voltage is within the range specified in the *Recommended Operating Conditions*. The supply voltage sets the device's electrical characteristics as described in the *Electrical Characteristics*. The positive voltage supply must be capable of sourcing current equal to the total current to be sourced by all outputs of the SN74HCS240 plus the maximum static supply current, I_{CC} , listed in *Electrical Characteristics* and any transient current required for switching. The logic device can only source as much current as is provided by the positive supply source. Be sure not to exceed the maximum total current through V_{CC} listed in the *Absolute Maximum Ratings*. The ground must be capable of sinking current equal to the total current to be sunk by all outputs of the SN74HCS240 plus the maximum supply current, I_{CC}, listed in *Electrical Characteristics*, and any transient current required for switching. The logic device can only sink as much current as can be sunk into its ground connection. Be sure not to exceed the maximum total current through GND listed in the *Absolute Maximum Ratings*. The SN74HCS240 can drive a load with a total capacitance less than or equal to 50 pF while still meeting all of the data sheet specifications. Larger capacitive loads can be applied; however, it is not recommended to exceed 50 pF. The SN74HCS240 can drive a load with total resistance described by $R_L \ge V_O$ / I_O , with the output voltage and current defined in the *Electrical Characteristics* table with V_{OH} and V_{OL} . When outputting in the high state, the output voltage in the equation is defined as the difference between the measured output voltage and the supply voltage at the V_{CC} pin. Total power consumption can be calculated using the information provided in CMOS Power Consumption and Cpd Calculation. Thermal increase can be calculated using the information provided in Thermal Characteristics of Standard Linear and Logic (SLL) Packages and Devices. #### CAUTION The maximum junction temperature, $T_{J(max)}$ listed in the *Absolute Maximum Ratings*, is an additional limitation to prevent damage to the device. Do not violate any values listed in the *Absolute Maximum Ratings*. These limits are provided to prevent damage to the device. #### 9.2.1.2 Input Considerations Input signals must cross $V_{t-(min)}$ to be considered a logic LOW, and $V_{t+(max)}$ to be considered a logic HIGH. Do not exceed the maximum input voltage range found in the *Absolute Maximum Ratings*. Unused inputs must be terminated to either V_{CC} or ground. These can be directly terminated if the input is completely unused, or they can be connected with a pull-up or pull-down resistor if the input is to be used sometimes, but not always. A pull-up resistor is used for a default state of HIGH, and a pull-down resistor is used for a default state of LOW. The resistor size is limited by drive current of the controller, leakage current into the SN74HCS240, as specified in the *Electrical Characteristics*, and the desired input transition rate. A 10-k Ω resistor value is often used due to these factors. The SN74HCS240 has no input signal transition rate requirements because it has Schmitt-trigger inputs. Another benefit to having Schmitt-trigger inputs is the ability to reject noise. Noise with a large enough amplitude can still cause issues. To know how much noise is too much, please refer to the $\Delta V_{T(min)}$ in the *Electrical Characteristics*. This hysteresis value will provide the peak-to-peak limit. Unlike what happens with standard CMOS inputs, Schmitt-trigger inputs can be held at any valid value without causing huge increases in power consumption. The typical additional current caused by holding an input at a value other than V_{CC} or ground is plotted in the *Typical Characteristics*. Refer to the Feature Description section for additional information regarding the inputs for this device. #### 9.2.1.3 Output Considerations The positive supply voltage is used to produce the output HIGH voltage. Drawing current from the output will decrease the output voltage as specified by the V_{OH} specification in the *Electrical Characteristics*. The ground voltage is used to produce the output LOW voltage. Sinking current into the output will increase the output voltage as specified by the V_{OL} specification in the *Electrical Characteristics*. Push-pull outputs that could be in opposite states, even for a very short time period, should never be connected directly together. This can cause excessive current and damage to the device. Two channels within the same device with the same input signals can be connected in parallel for additional output drive strength. Unused outputs can be left floating. Do not connect outputs directly to V_{CC} or ground. Refer to Feature Description section for additional information regarding the outputs for this device. #### 9.2.2 Detailed Design Procedure - Add a decoupling capacitor from V_{CC} to GND. The capacitor needs to be placed physically close to the device and electrically close to both the V_{CC} and GND pins. An example layout is shown in the Layout section. - 2. Ensure the capacitive load at the output is ≤ 50 pF. This is not a hard limit, however it will ensure optimal performance. This can be accomplished by providing short, appropriately sized traces from the SN74HCS240 to one or more of the receiving devices. - 3. Ensure the resistive load at the output is larger than $(V_{CC} / I_{O(max)}) \Omega$. This will ensure that the maximum output current from the *Absolute Maximum Ratings* is not violated. Most CMOS inputs have a resistive load measured in M Ω ; much larger than the minimum calculated above. - 4. Thermal issues are rarely a concern for logic gates; the power consumption and thermal increase, however, can be calculated using the steps provided in the application report, CMOS Power Consumption and Cpd Calculation. #### 9.2.3 Application Curve 図 9-2. Simulated signal integrity at the reciever with different damping resistor (R_d) values # 10 Power Supply Recommendations The power supply can be any voltage between the minimum and maximum supply voltage rating located in the *Recommended Operating Conditions*. Each V_{CC} terminal should have a good bypass capacitor to prevent power disturbance. A 0.1- μ F capacitor is recommended for this device. It is acceptable to parallel multiple bypass caps to reject different frequencies of noise. The 0.1- μ F and 1- μ F capacitors are commonly used in parallel. The bypass capacitor should be installed as close to the power terminal as possible for best results, as shown in given example layout image. #### 11 Layout #### 11.1 Layout Guidelines When using multiple-input and multiple-channel logic devices inputs must not ever be left floating. In many cases, functions or parts of functions of digital logic devices are unused; for example, when only two inputs of a triple-input AND gate are used or only 3 of the 4 buffer gates are used. Such unused input pins must not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. All unused inputs of digital logic devices must be connected to a logic high or logic low voltage, as defined by the input voltage specifications, to prevent them from floating. The logic level that must be applied to any particular unused input depends on the function of the device. Generally, the inputs are tied to GND or V_{CC}, whichever makes more sense for the logic function or is more convenient. #### 11.2 Layout Example 図 11-1. Example layout for the SN74HCS240 in the RKS Package # 12 Device and Documentation Support TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device, generate code, and develop solutions are listed below. ## **12.1 Documentation Support** #### 12.1.1 Related Documentation For related documentation see the following: - Texas Instruments, HCMOS Design Considerations application report (SCLA007) - Texas Instruments, CMOS Power Consumption and Cpd Calculation application report (SDYA009) - · Texas Instruments, Designing With Logic application report ## 12.2 Receiving Notification of Documentation Updates To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Subscribe to updates* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document. ## 12.3 サポート・リソース TI E2E[™] サポート・フォーラムは、エンジニアが検証済みの回答と設計に関するヒントをエキスパートから迅速かつ直接得ることができる場所です。既存の回答を検索したり、独自の質問をしたりすることで、設計で必要な支援を迅速に得ることができます。 リンクされているコンテンツは、該当する貢献者により、現状のまま提供されるものです。これらは TI の仕様を構成するものではなく、必ずしも TI の見解を反映したものではありません。TI の使用条件を参照してください。 #### 12.4 Trademarks TI E2E™ is a trademark of Texas Instruments. すべての商標は、それぞれの所有者に帰属します。 #### 12.5 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. #### 12.6 Glossary TI Glossary This glossary lists and explains terms, acronyms, and definitions. # 13 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. www.ti.com 10-Dec-2021 #### PACKAGING INFORMATION | Orderable Device | Status | Package Type | Package
Drawing | Pins | Package
Qty | Eco Plan | Lead finish/
Ball material | MSL Peak Temp | Op Temp (°C) | Device Marking
(4/5) | Samples | |------------------|--------|--------------|--------------------|------|----------------|--------------|-------------------------------|--------------------|--------------|-------------------------|---------| | | | | | | | | (6) | | | | | | SN74HCS240RKSR | ACTIVE | VQFN | RKS | 20 | 3000 | RoHS & Green | NIPDAU | Level-1-260C-UNLIM | -40 to 125 | HCS240 | Samples | (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. - (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. - (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. - (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. - (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width. **Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. # **PACKAGE MATERIALS INFORMATION** www.ti.com 21-Oct-2021 # TAPE AND REEL INFORMATION | _ | | | |---|----|---| | | | Dimension designed to accommodate the component width | | | B0 | Dimension designed to accommodate the component length | | | K0 | Dimension designed to accommodate the component thickness | | | W | Overall width of the carrier tape | | ı | P1 | Pitch between successive cavity centers | ## QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE #### *All dimensions are nominal | Device | Package
Type | Package
Drawing | | | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |----------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | SN74HCS240RKSR | VQFN | RKS | 20 | 3000 | 180.0 | 12.4 | 2.8 | 4.8 | 1.2 | 4.0 | 12.0 | Q1 | www.ti.com 21-Oct-2021 #### *All dimensions are nominal | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Height (mm) | | |----------------|--------------|-----------------|------|------|-------------|-------------|------| | SN74HCS240RKSR | VQFN | RKS | 20 | 3000 | 210.0 | 185.0 | 35.0 | 2.5 x 4.5, 0.5 mm pitch PLASTIC QUAD FLATPACK - NO LEAD This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details. INSTRUMENTS www.ti.com PLASTIC QUAD FLATPACK - NO LEAD #### NOTES: - 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. - 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance. PLASTIC QUAD FLATPACK - NO LEAD NOTES: (continued) - 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271). - 5. Vias are optional depending on application, refer to device data sheet. If some or all are implemented, recommended via locations are shown. PLASTIC QUAD FLATPACK - NO LEAD NOTES: (continued) 6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. ## 重要なお知らせと免責事項 TI は、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス・デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。 これらのリソースは、TI 製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した TI 製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。 上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている TI 製品を使用するアプリケーションの開発の目的でのみ、TI はその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。TI や第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、TI およびその代理人を完全に補償するものとし、TI は一切の責任を拒否します。 TI の製品は、TI の販売条件、または ti.com やかかる TI 製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。TI がこれらのリソースを提供することは、適用される TI の保証または他の保証の放棄の拡大や変更を意味するものではありません。 お客様がいかなる追加条項または代替条項を提案した場合でも、TIはそれらに異議を唱え、拒否します。 郵送先住所:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021, Texas Instruments Incorporated