

SN74HCS20-Q1

JAJSIQ0 -MARCH 2020

SN74HCS20-Q1 車載用、シュミット・トリガ入力を搭載したデュアル 4 入力 NAND ゲート

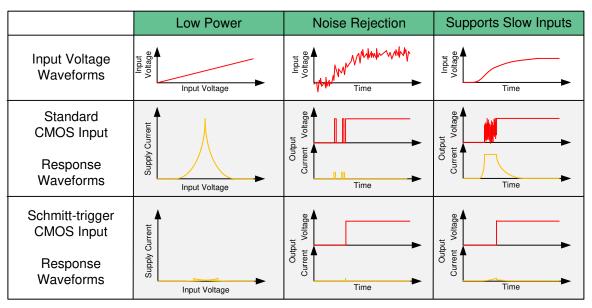
1 特長

- 車載アプリケーション用に AEC-Q100 認定済み
 - デバイス温度グレード 1: -40°C~+125°C、T₄
 - デバイス HBM ESD 分類レベル 2
 - デバイス CDM ESD 分類レベル C6
- 広い動作電圧範囲: 2V~6V
- シュミット・トリガ入力により低速またはノイズ の多い入力信号に対応
- 低消費電力
 - Icc: 100nA (標準値)
 - 入力リーク電流:±100nA (標準値)
- 5Vで±7.8mAの出力駆動能力

2 アプリケーション

- アラーム/タンパ検出回路
- S-R ラッチ

3 概要


このデバイスには、シュミット・トリガ入力採用の 2 つの独立した 4 入力 NAND ゲートが内蔵されています。各ゲートはブール関数 $Y = A \bullet B \bullet C \bullet D$ を正論理で実行します。

製品情報(1)

型番	パッケージ	本体サイズ(公称)
SN74HCS20QPWRQ1	TSSOP (14)	5.00mm × 4.40mm
SN74HCS20QDRQ1	SOIC (14)	8.70mm × 3.90mm

(1) 利用可能なすべてのパッケージについては、このデータシートの末 尾にある注文情報を参照してください。

シュミットトリガ入力の利点

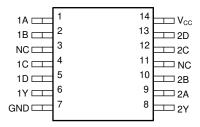
JAJSIQ0 – MARCH 2020 www.ti.com

目次

1	特長1		8.3 Feature Description	8
2	アプリケーション1		8.4 Device Functional Modes	
3	概要	9	Application and Implementation	10
4	改訂履歴		9.1 Application Information	10
5	Pin Configuration and Functions		9.2 Typical Application	10
6	Specifications	10	Power Supply Recommendations	13
•	6.1 Absolute Maximum Ratings	11	Layout	13
	6.2 ESD Ratings		11.1 Layout Guidelines	13
	6.3 Recommended Operating Conditions		11.2 Layout Example	13
	6.4 Thermal Information	12	デバイスおよびドキュメントのサポート	14
	6.5 Electrical Characteristics		12.1 ドキュメントのサポート	14
	6.6 Switching Characteristics		12.2 関連リンク	14
	6.7 Typical Characteristics		12.3 コミュニティ・リソース	14
7	Parameter Measurement Information		12.4 商標	14
8	Detailed Description 8		12.5 静電気放電に関する注意事項	14
U	8.1 Overview		12.6 Glossary	14
	8.2 Functional Block Diagram	13	メカニカル、パッケージ、および注文情報	

4 改訂履歴

資料番号末尾の英字は改訂を表しています。その改訂履歴は英語版に準じています。


日付	リビジョン	注
2020年3月	*	初版

www.ti.com JAJSIQ0-MARCH 2020

5 Pin Configuration and Functions

D or PW Package 14-Pin SOIC or TSSOP Top View

Pin Functions

PIN		1/0	DECODIDATION					
NAME	NO.	I/O	DESCRIPTION					
1A	1	Input	Channel 1, Input A					
1B	2	Input	Channel 1, Input B					
NC	3, 11	_	Not internally connected					
1C	4	Input	Channel 1, Input C					
1D	5	Input	Channel 1, Input D					
1Y	6	Output	Channel 1, Output Y					
GND	7	_	Ground					
2Y	8	Output	Channel 2, Output Y					
2A	9	Input	Channel 2, Input A					
2B	10	Input	Channel 2, Input B					
2C	12	Input	Channel 2, Input C					
2D	13	Input	Channel 2, Input D					
V _{CC}	14	_	Positive Supply					

TEXAS INSTRUMENTS

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			MIN	MAX	UNIT
V_{CC}	Supply voltage		-0.5	7	V
I _{IK}	Input clamp current ⁽²⁾	$V_{I} < -0.5 \text{ or } V_{I} > V_{CC} + 0.5$		±20	mA
I _{OK}	Output clamp current ⁽²⁾	$V_{O} < -0.5 \text{ or } V_{O} > V_{CC} + 0.5$		±20	mA
Io	Continuous output current	$V_O = 0$ to V_{CC}		±35	mA
	Continuous current through V _{CC} or GND			±50	mA
TJ	Junction temperature (3)		150	°C	
T _{stg}	Storage temperature		-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

	-		VALUE	UNIT
		Human body model (HBM), per AEC Q100-002 ⁽¹⁾ HBM ESD Classification Level 2	±4000	W
V _(ESD)	Electrostatic discharge	Charged device model (CDM), per AEC Q100-011 CDM ESD Classification Level C6	±1500	V

⁽¹⁾ AEC Q100-002 indicate that HBM stressing shall be in accordrance with the ANSI/ESDA/JEDEC JS-001 specification.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM MAX	UNIT
V _{CC}	Supply voltage	2	6	V
VI	Input voltage	0	V _{cc}	V
Vo	Output voltage	0	V _{cc}	V
Δt/Δν	Input transition rise and fall rate		Unlimited	ns/V
T _A	Ambient temperature	-40	125	°C

6.4 Thermal Information

		SN74H0	SN74HCS20-Q1			
	THERMAL METRIC	PW (TSSOP)	D (SOIC)	UNIT		
		14 PINS	14 PINS			
$R_{\theta JA}$	Junction-to-ambient thermal resistance	151.7	133.6	°C/W		
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	79.4	89.0	°C/W		
$R_{\theta JB}$	Junction-to-board thermal resistance	94.7	89.5	°C/W		
Ψ_{JT}	Junction-to-top characterization parameter	25.2	45.5	°C/W		
Ψ_{JB}	Junction-to-board characterization parameter	94.1	89.1	°C/W		
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	N/A	N/A	°C/W		

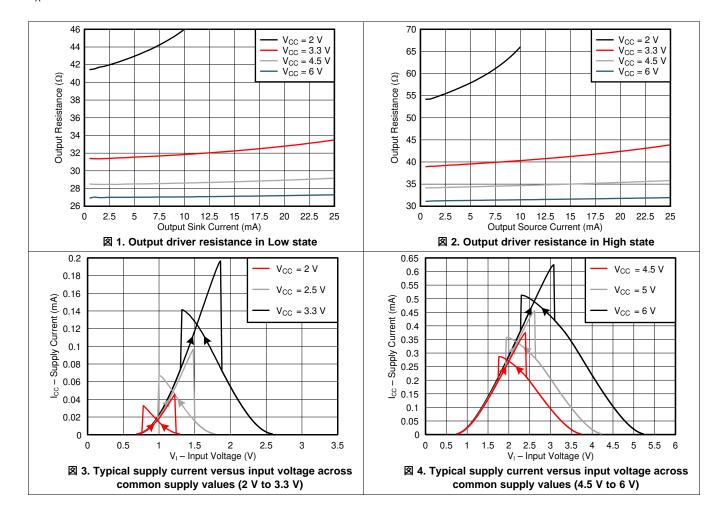
⁽²⁾ The input and output voltage ratings may be exceeded if the input and output current ratings are observed. Do not exceed the absolute maximum voltage supply rating.

⁽³⁾ Guaranteed by design.

6.5 Electrical Characteristics

over operating free-air temperature range; typical ratings measured at TA = 25°C (unless otherwise noted).

	PARAMETER	TEST CO	NDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
				2 V	0.7		1.5	
V_{T+}	Positive switching threshold			4.5 V	1.7		3.15	V
				6 V	2.1		4.2	
				2 V	0.3		1.0	
V_{T-}	Negative switching threshold			4.5 V	0.9		2.2	V
				6 V	1.2		3.0	
				2 V	0.2		1.0	
ΔV_{T}	Hysteresis (V _{T+} - V _{T-})			4.5 V	0.4		1.4	V
				6 V	0.6		1.6	
			$I_{OH} = -20 \mu A$	2 V to 6 V	$V_{CC} - 0.1$	$V_{CC} - 0.002$		
V_{OH}	High-level output voltage	$V_I = V_{IH}$ or V_{IL}	$I_{OH} = -6 \text{ mA}$	4.5 V	4	4.3		V
			$I_{OH} = -7.8 \text{ mA}$	6 V	5.4	5.75		
			$I_{OL} = 20 \mu A$	2 V to 6 V		0.002	0.1	
V_{OL}	Low-level output voltage	$V_I = V_{IH}$ or V_{IL}	$I_{OL} = 6 \text{ mA}$	4.5 V		0.18	0.30	V
			$I_{OL} = 7.8 \text{ mA}$	6 V		0.22	0.33	
I	Input leakage current	$V_I = V_{CC}$ or 0	$V_I = V_{CC}$ or 0			±100	±1000	nA
I_{CC}	Supply current	$V_I = V_{CC}$ or 0, I_C	_O = 0	6 V		0.1	2	μΑ
Ci	Input capacitance			2 V to 6 V			5	pF
C _{pd}	Power dissipation capacitance per gate	No load		2 V to 6 V		10		pF

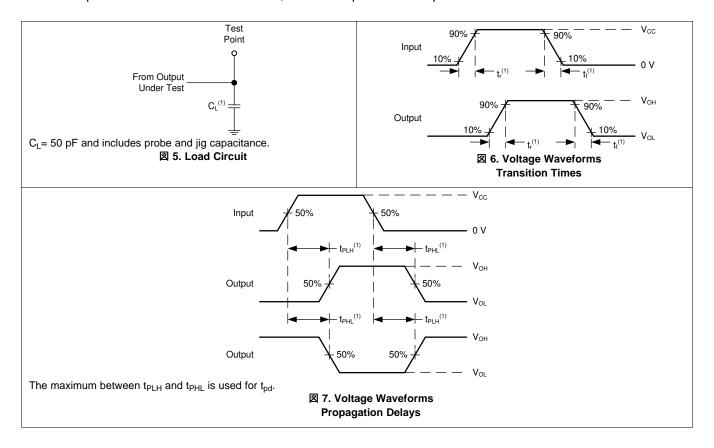

6.6 Switching Characteristics

over operating free-air temperature range; typical ratings measured at $T_A = 25$ °C (unless otherwise noted). See the Parameter Measurement Information.

	PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{cc}	MIN	TYP	MAX	UNIT
				2 V		19	56	
t _{pd} Propagation delay	Propagation delay	A or B	Υ	4.5 V		8	22	ns
				6 V		7	19	
	Transition-time		Y	2 V		9	17	
t _t				4.5 V		5	8	ns
				6 V		4	7	

6.7 Typical Characteristics

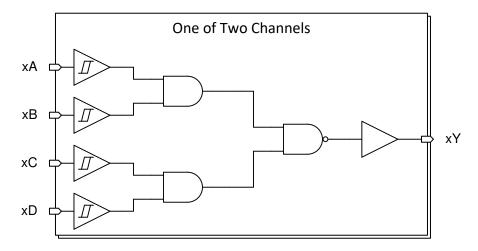
 $T_A = 25^{\circ}C$



www.tij.co.jp

7 Parameter Measurement Information

- Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_O = 50~\Omega$, $t_t < 2.5~ns$.
- The outputs are measured one at a time, with one input transition per measurement.


TEXAS INSTRUMENTS

8 Detailed Description

8.1 Overview

This device contains two independent 4-input NAND gates with Schmitt-trigger inputs. Each gate performs the Boolean function $Y = \overline{A \bullet B \bullet C \bullet D}$ in positive logic.

8.2 Functional Block Diagram

8.3 Feature Description

8.3.1 Balanced CMOS Push-Pull Outputs

A balanced output allows the device to sink and source similar currents. The drive capability of this device may create fast edges into light loads so routing and load conditions should be considered to prevent ringing. Additionally, the outputs of this device are capable of driving larger currents than the device can sustain without being damaged. It is important for the output power of the device to be limited to avoid damage due to overcurrent. The electrical and thermal limits defined in the *Absolute Maximum Ratings* must be followed at all times.

8.3.2 CMOS Schmitt-Trigger Inputs

Standard CMOS inputs are high impedance and are typically modeled as a resistor in parallel with the input capacitance given in the *Electrical Characteristics*. The worst case resistance is calculated with the maximum input voltage, given in the *Absolute Maximum Ratings*, and the maximum input leakage current, given in the *Electrical Characteristics*, using ohm's law $(R = V \div I)$.

The Schmitt-trigger input architecture provides hysteresis as defined by ΔV_T in the *Electrical Characteristics*, which makes this device extremely tolerant to slow or noisy inputs. While the inputs can be driven much slower than standard CMOS inputs, it is still recommended to properly terminate unused inputs. Driving the inputs slowly will also increase dynamic current consumption of the device. For additional information regarding Schmitt-trigger inputs, please see Understanding Schmitt Triggers.

Feature Description (continued)

8.3.3 Clamp Diode Structure

The inputs and outputs to this device have both positive and negative clamping diodes as depicted in 28.

注意

Voltages beyond the values specified in the Absolute Maximum Ratings table can cause damage to the device. The input negative-voltage and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

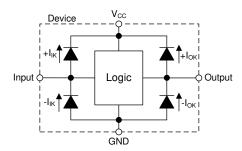


図 8. Electrical Placement of Clamping Diodes for Each Input and Output

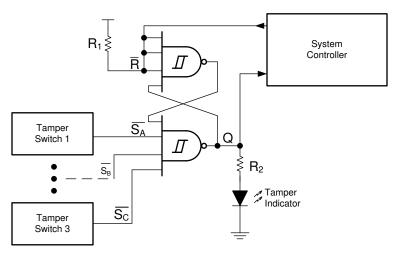
8.4 Device Functional Modes

表 1. Function Table

	INPUTS								
Α	В	C	D	Y					
Н	Η	Η	Η	L					
L	Χ	Χ	Χ	Н					
Χ	L	Χ	Χ	Н					
Χ	Χ	L	Χ	Н					
Х	Х	Χ	L	Н					

9 Application and Implementation

注


Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

In this application, two 4-input NAND gates are used to create an active-low SR latch as shown in 29.

The SN74HCS20-Q1 is used to drive the tamper indicator LED and provide one bit of data to the system controller. When the tamper switch outputs LOW, the output Q becomes HIGH. This output remains HIGH until the system controller addresses the event and sends a LOW signal to the R input which returns the Q output back to LOW.

9.2 Typical Application

2 9. Typical application block diagram

9.2.1 Design Requirements

- All signals in the system operate at 5 V
- · Avoid unstable state by not having LOW signals on both inputs
- Conditions for output
 - Q output is HIGH when S is LOW
 - Q output remains High until R is LOW

9.2.1.1 Power Considerations

Ensure the desired supply voltage is within the range specified in the *Recommended Operating Conditions*. The supply voltage sets the device's electrical characteristics as described in the *Electrical Characteristics*.

The supply must be capable of sourcing current equal to the total current to be sourced by all outputs of the SN74HCS20-Q1 plus the maximum supply current, I_{CC} , listed in the *Electrical Characteristics*. The logic device can only source or sink as much current as it is provided at the supply and ground pins, respectively. Be sure not to exceed the maximum total current through GND or V_{CC} listed in the *Absolute Maximum Ratings*.

The SN74HCS20-Q1 can drive a load with a total capacitance less than or equal to 50 pF connected to a high-impedance CMOS input while still meeting all of the datasheet specifications. Larger capacitive loads can be applied, however it is not recommended to exceed 70 pF.

JAJSIQ0-MARCH 2020 www.tij.co.jp

Typical Application (continued)

Total power consumption can be calculated using the information provided in CMOS Power Consumption and C_{pd} Calculation.

Thermal increase can be calculated using the information provided in Thermal Characteristics of Standard Linear and Logic (SLL) Packages and Devices.

The maximum junction temperature, T_I(max) listed in the *Absolute Maximum Ratings*, is an additional limitation to prevent damage to the device. Do not violate any values listed in the Absolute Maximum Ratings. These limits are provided to prevent damage to the device.

9.2.1.2 Input Considerations

Input signals must cross V_{t} (min) to be considered a logic LOW, and V_{t+} (max) to be considered a logic HIGH. Do not exceed the maximum input voltage range found in the Absolute Maximum Ratings.

Unused inputs must be terminated to either V_{CC} or ground. These can be directly terminated if the input is completely unused, or they can be connected with a pull-up or pull-down resistor if the input is to be used sometimes, but not always. A pull-up resistor is used for a default state of HIGH, and a pull-down resistor is used for a default state of LOW. The resistor size is limited by drive current of the controller, leakage current into the SN74HCS20-Q1, as specified in the *Electrical Characteristics*, and the desired input transition rate. A 10-k Ω resistor value is often used due to these factors.

The SN74HCS20-Q1 has no input signal transition rate requirements because it has Schmitt-trigger inputs.

Another benefit to having Schmitt-trigger inputs is the ability to reject noise. Noise with a large enough amplitude can still cause issues. To know how much noise is too much, please refer to the ΔV_T (min) in the *Electrical* Characteristics. This hysteresis value will provide the peak-to-peak limit.

Unlike what happens with standard CMOS inputs, Schmitt-trigger inputs can be held at any valid value without causing huge increases in power consumption. The typical additional current caused by holding an input at a value other than V_{CC} or ground is plotted in the *Typical Characteristics*.

Refer to the *Feature Description* for additional information regarding the inputs for this device.

9.2.1.3 Output Considerations

The positive supply voltage is used to produce the output HIGH voltage. Drawing current from the output will decrease the output voltage as specified by the V_{OH} specification in the *Electrical Characteristics*. Similarly, the ground voltage is used to produce the output LOW voltage. Sinking current into the output will increase the output voltage as specified by the V_{OL} specification in the *Electrical Characteristics*.

Unused outputs can be left floating.

Refer to *Feature Description* for additional information regarding the outputs for this device.

Typical Application (continued)

9.2.2 Detailed Design Procedure

- 1. Add a decoupling capacitor from V_{CC} to GND. The capacitor needs to be placed physically close to the device and electrically close to both the V_{CC} and GND pins. An example layout is shown in the *Layout*.
- Ensure the capacitive load at the output is ≤ 70 pF. This is not a hard limit, however it will ensure optimal
 performance. This can be accomplished by providing short, appropriately sized traces from the SN74HCS20Q1 to the receiving device.
- 3. Ensure the resistive load at the output is larger than $(V_{CC} / 25 \text{ mA}) \Omega$. This will ensure that the maximum output current from the *Absolute Maximum Ratings* is not violated. Most CMOS inputs have a resistive load measured in megaohms; much larger than the minimum calculated above.
- 4. Thermal issues are rarely a concern for logic gates, however the power consumption and thermal increase can be calculated using the steps provided in the application report, CMOS Power Consumption and Cpd Calculation

9.2.3 Application Curves

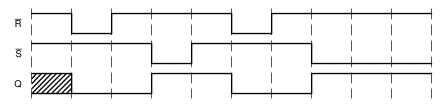


図 10. Application timing diagram

www.tij.co.jp JAJSIQ0 – MARCH 2020

10 Power Supply Recommendations

The power supply can be any voltage between the minimum and maximum supply voltage rating located in the *Recommended Operating Conditions*. Each V_{CC} terminal should have a good bypass capacitor to prevent power disturbance. A 0.1- μ F capacitor is recommended for this device. It is acceptable to parallel multiple bypass caps to reject different frequencies of noise. The 0.1- μ F and 1- μ F capacitors are commonly used in parallel. The bypass capacitor should be installed as close to the power terminal as possible for best results, as shown in 2

11 Layout

11.1 Layout Guidelines

When using multiple-input and multiple-channel logic devices inputs must not ever be left floating. In many cases, functions or parts of functions of digital logic devices are unused; for example, when only two inputs of a triple-input AND gate are used or only 3 of the 4 buffer gates are used. Such unused input pins must not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. All unused inputs of digital logic devices must be connected to a logic high or logic low voltage, as defined by the input voltage specifications, to prevent them from floating. The logic level that must be applied to any particular unused input depends on the function of the device. Generally, the inputs are tied to GND or V_{CC} , whichever makes more sense for the logic function or is more convenient.

11.2 Layout Example

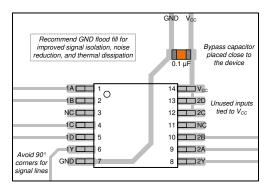


図 11. Example layout for the SN74HCS20-Q1

INSTRUMENTS

12 デバイスおよびドキュメントのサポート

12.1 ドキュメントのサポート

12.1.1 関連資料

関連資料については、以下を参照してください。

- 『Reduce Noise and Save Power with the New HCS Logic Family』(英語)
- 『CMOS Power Consumption and Cpd Calculation』(英語)
- 『Designing With Logic』(英語)

12.2 関連リンク

次の表に、クイック・アクセス・リンクを示します。カテゴリには、技術資料、サポートおよびコミュニティ・リソース、ツールとソフ トウェア、およびサンプル注文またはご購入へのクイック・アクセスが含まれます。

12.3 コミュニティ・リソース

TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

12.4 商標

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

12.5 静電気放電に関する注意事項

これらのデバイスは、限定的なESD(静電破壊)保護機能を内 蔵しています。保存時または取り扱い時は、MOSゲートに対す る静電破壊を防 上するために、リード線同士をショートさせておくか、デバイスを導電フォームに入れる必要があります。

12.6 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 メカニカル、パッケージ、および注文情報

以降のページには、メカニカル、パッケージ、および注文に関する情報が記載されています。この情報は、そのデバイスに ついて利用可能な最新のデータです。このデータは予告なく変更されることがあり、ドキュメントが改訂される場合もありま す。本データシートのブラウザ版を使用されている場合は、画面左側の説明をご覧ください。

重要なお知らせと免責事項

TI は、技術データと信頼性データ(データシートを含みます)、設計リソース(リファレンス・デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。

これらのリソースは、TI 製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した TI 製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションが適用される各種規格や、その他のあらゆる安全性、セキュリティ、またはその他の要件を満たしていることを確実にする責任を、お客様のみが単独で負うものとします。上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている TI 製品を使用するアプリケーションの開発の目的でのみ、TI はその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。TI や第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、TI およびその代理人を完全に補償するものとし、TI は一切の責任を拒否します。

TI の製品は、TI の販売条件(www.tij.co.jp/ja-jp/legal/termsofsale.html)、または ti.com やかかる TI 製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。TI がこれらのリソースを提供することは、適用されるTI の保証または他の保証の放棄の拡大や変更を意味するものではありません。

Copyright © 2020, Texas Instruments Incorporated 日本語版 日本テキサス・インスツルメンツ株式会社

PACKAGE OPTION ADDENDUM

10-Dec-2020

PACKAGING INFORMATION

www.ti.com

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
SN74HCS20QDRQ1	ACTIVE	SOIC	D	14	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	HCS20Q1	Samples
SN74HCS20QPWRQ1	ACTIVE	TSSOP	PW	14	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	HCS20Q1	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

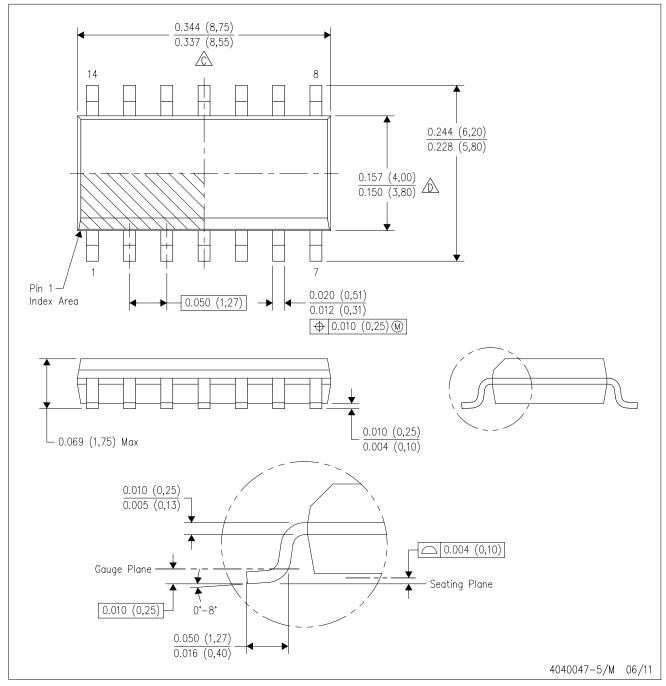
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

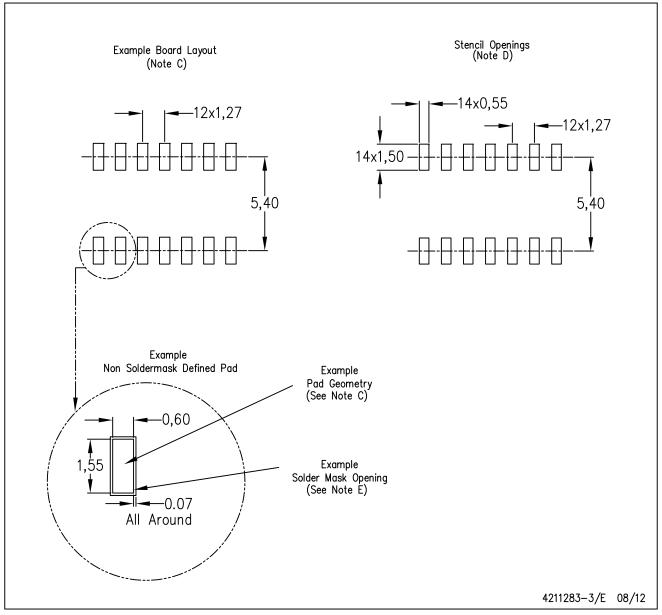
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.



10-Dec-2020

D (R-PDSO-G14)

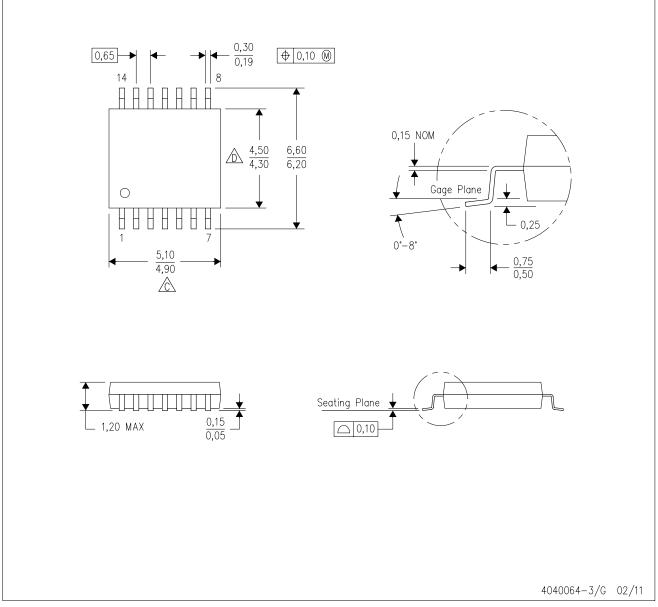
PLASTIC SMALL OUTLINE



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AB.

D (R-PDSO-G14)

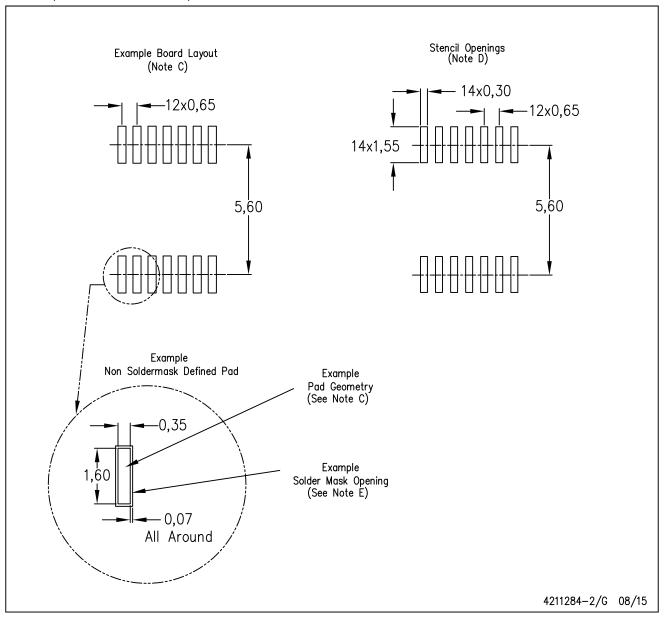
PLASTIC SMALL OUTLINE



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

PW (R-PDSO-G14)

PLASTIC SMALL OUTLINE



- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153

PW (R-PDSO-G14)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

重要なお知らせと免責事項

TI は、技術データと信頼性データ(データシートを含みます)、設計リソース(リファレンス・デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。

これらのリソースは、TI 製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した TI 製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションが適用される各種規格や、その他のあらゆる安全性、セキュリティ、またはその他の要件を満たしていることを確実にする責任を、お客様のみが単独で負うものとします。上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている TI 製品を使用するアプリケーションの開発の目的でのみ、TI はその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。TI や第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、TI およびその代理人を完全に補償するものとし、TI は一切の責任を拒否します。

TIの製品は、TIの販売条件(www.tij.co.jp/ja-jp/legal/termsofsale.html)、または ti.com やかかる TI 製品の関連資料などのいずれかを通じて提供 する適用可能な条項の下で提供されています。TI がこれらのリソースを提供することは、適用されるTI の保証または他の保証の放棄の拡大や変更を意味するものではありません。

Copyright © 2020, Texas Instruments Incorporated 日本語版 日本テキサス・インスツルメンツ株式会社