OPA838 JAJSDO2C - AUGUST 2017 - REVISED OCTOBER 2023 #### OPA838 1mA、300MHz ゲイン帯域幅、 電圧帰還型オペアンプ ### 1 特長 - ゲイン帯域幅積:300MHz - 非常に低い (トリムされた) 消費電流:950µA - 带域幅:90MHz (A_V = 6V/V) - 全高出力帯域幅:45MHz、4Vpp - 負レール入力、レール・ツー・レール出力 - 単一電源動作範囲:2.7V~5.4V - 25℃の入力オフセット:±125µV (最大値) - 入力オフセット電圧ドリフト:±1.6μV/℃未満 (最大値) - 入力電圧ノイズ:1.8nV/√Hz (200Hz 超) - 入力電流ノイズ:1pA/√Hz (2000 Hz 超) - 1µA 未満のシャットダウン電流で節電 ### 2 アプリケーション - 低消費電力トランスインピーダンス・アンプ - 低ノイズ高ゲイン段 - 12 ビット~16 ビットの低消費電力 SAR ADC ドライバ - 高ゲインのアクティブ・フィルタ設計 - 超音波流量計 ### 3 概要 非補償型の電圧帰還オペアンプである OPA838 は、 1.8nV/√Hz の入力ノイズ電圧で 300MHz という高ゲイン 帯域幅積を実現し、必要なトリムされた消費電流はわずか 0.95mA です。これらの機能の組み合わせにより、信号レ シーバ・アプリケーションで入力電圧ノイズを最小限に抑 える必要のあるフォトダイオード・トランスインピーダンス設 計や高電圧ゲイン段に対応する、極めて電力効率の高い デバイスを提供します。 推奨される 6V/V の最小非反転ゲインで動作した場合、-3dB 帯域幅は 90MHz になります。入力ノイズとオフセット が極めて低い電圧 OPA838 は、とりわけ高ゲインに最適 です。たとえ 1000V/V の DC カップリング・ゲインでも、 ±125mV の最大出力オフセット電圧で 300kHz の信号帯 域幅を利用できます。 シングル・チャネルの OPA838 は、電源シャットダウン機 能付きの 6 ピン SOT-23 パッケージおよび SC70 パッケ ージと、5 ピン SC70 パッケージで供給されます。 #### パッケージ情報 | 部品番号 | パッケージ ⁽¹⁾ | パッケージ・サイズ ⁽²⁾ | |--------|----------------------|--------------------------| | | DBV (SOT-23, 6) | 2.9mm × 2.8mm | | OPA838 | DCK (SC70, 5) | 2mm × 1.25mm | | | DCK (SC70, 6) | 2mm × 1.5mm | - (1) 利用可能なすべてのパッケージについては、データシートの末尾 にあるパッケージ・オプションについての付録を参照してください。 - パッケージ・サイズ (長さ×幅) は公称値であり、該当する場合はピ ンも含まれます。 3V の単一電源、3mW 未満のフォトダイオード・アンプ、1.1pA/√Hz 未満の合計入力換算電流ノイズ、1MHz SSBW 全体で 100kΩ のゲイン ### **Table of Contents** | 1 特長1 | 8.1 Overview | 21 | |---|-------------------------------------|-----------------| | 2 アプリケーション1 | 8.2 Functional Block Diagram | | | 3 概要1 | 8.3 Feature Description | | | 4 Revision History2 | 8.4 Device Functional Modes | <mark>25</mark> | | 5 Device Comparison Table3 | 9 Application and Implementation | 29 | | 6 Pin Configuration and Functions3 | 9.1 Application Information | 29 | | 7 Specifications4 | 9.2 Typical Applications | <mark>33</mark> | | 7.1 Absolute Maximum Ratings4 | 9.3 Power Supply Recommendations | 38 | | 7.2 ESD Ratings4 | 9.4 Layout | 39 | | 7.3 Recommended Operating Conditions4 | 10 Device and Documentation Support | | | 7.4 Thermal Information4 | 10.1 Device Support | 40 | | 7.5 Electrical Characteristics: V _S = 5 V5 | 10.2 Documentation Support | 40 | | 7.6 Electrical Characteristics: V _S = 3 V7 | 10.3ドキュメントの更新通知を受け取る方法 | 40 | | 7.7 Typical Characteristics: V _S = 5 V9 | 10.4 サポート・リソース | 40 | | 7.8 Typical Characteristics: V _S = 3 V | 10.5 Trademarks | 41 | | 7.9 Typical Characteristics: Over Supply Range16 | 10.6 静電気放電に関する注意事項 | 41 | | 8 Detailed Description21 | 10.7 用語集 | 41 | | | | | ## **4 Revision History** 資料番号末尾の英字は改訂を表しています。その改訂履歴は英語版に準じています。 | С | hanges from Revision B (October 2018) to Revision C (October 2023) | Page | |---|---|-------------------------| | • | ドキュメント全体にわたって表、図、相互参照の採番方法を更新 | 1 | | • | 「製品情報」表を「パッケージ情報」に変更、列を更新、注2を追加 | 1 | | • | Updated quiescent operating current values in both <i>Electrical Characteristics</i> tables | 5 | | С | hanges from Revision A (February 2018) to Revision B (October 2018) | Page | | • | 「特長」セクションの「5µA 未満のシャットダウン電流」を「1µA 未満のシャットダウン電流」に変更 | 1 | | • | Changed value of common-mode and differential-mode input impedance in <i>Electrical Characteristics:</i> V and <i>Electrical Characteristics:</i> $V_S = 3$ V tables | / _S = 5
5 | | • | Changed value of power-down quiescent current in <i>Electrical Characteristics:</i> $V_S = 5 V$ and <i>Electrical</i> | | | | Characteristics: V _S = 3 V tables | <mark>5</mark> | | • | Changed 5 µA to 1 µA in Overview section | 21 | | • | Changed standby current from 5 μA to 1 μA in Power-Down Operation section | | | • | Changed common-mode input capacitance from 1.3 pF to 1 pF in Trade-Offs in Selecting The Feedback Resistor Value section | | | • | Changed 1 + 6.3 / 1.2 = 6.25 V/V, adding the 1.3-pF device common-mode capacitance to 1 + 6 / 1.2 = adding the 1-pF device common-mode capacitance in Trade-Offs in Selecting The Feedback Resistor section | | | • | Changed 2 μ A to 0.1 μ A and 5 μ A to 1 μ A in last sentence of <i>Power Shutdown Operation</i> section | | | • | Changed Power Supply Recommendations and Thermal Notes title to Power Supply Recommendation | 1538 | 資料に関するフィードバック (ご意見やお問い合わせ) を送信 Copyright © 2023 Texas Instruments Incorporated ### **5 Device Comparison Table** | PART NUMBER ⁽¹⁾ | GBP (MHz) | 5-V I _Q
(mA, MAXIMUM
25°C) | INPUT NOISE
VOLTAGE
(nV/√ Hz) | 2-V _{PP} THD
(dBc, 100 kHz) | RAIL-TO-RAIL
INPUT/OUTPUT | DUALS | |----------------------------|-----------|---|-------------------------------------|---|------------------------------|---------| | OPA838 | 300 | 0.99 | 1.9 | -110 | Negative in/out | None | | OPA837 | 50 | 0.625 | 4.7 | -120 | Negative in/out | OPA2837 | | OPA835 | 30 | 0.35 | 9.3 | -100 | Negative in/out | OPA2835 | | OPA836 | 110 | 1 | 4.8 | –115 | Negative in/out | OPA2836 | | LMP7717 | 88 | 1.4 | 5.8 | _ | Negative in/out | LMP7718 | | OPA830 | 100 | 4.7 | 9.5 | -105 | Negative in/out | OPA2830 | | THS4281 | 38 | 0.93 | 12.5 | 12.5 | In/out | None | ⁽¹⁾ For a complete selection of TI high-speed amplifiers, visit www.ti.com ### **6 Pin Configuration and Functions** 図 6-1. DBV Package. 6-Pin SOT-23 and DCK Package, 6-Pin SC70 (Top View) 図 6-2. DCK Package, 5-Pin SC70 (Top View) #### **Pin Functions** | PIN | | | | | |------|--------------------------------|---------------|------------------|--| | NAME | DBV (SOT-23),
DCK (SC70, 6) | DCK (SC70, 5) | TYPE | DESCRIPTION | | PD | 5 | _ | Input/
Output | Amplifier power down. Low = disabled, high = normal operation (pin must be driven). | | VIN- | 4 | 4 | Input/
Output | Inverting input pin | | VIN+ | 3 | 3 | Input/
Output | Noninverting input pin | | VOUT | 1 | 1 | Input/
Output | Output pin | | VS- | 2 | 2 | Power | Negative power-supply pin | | VS+ | 6 | 5 | Power | Positive power-supply input | ### 7 Specifications ### 7.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted)(1) | | | MIN MAX | UNIT | |----------------------|---|---|------| | V- to V- | Supply voltage | 5.5 | V | | V_{S-} to V_{S+} | Supply turn-on, -off maximum dV/dT ⁽²⁾ | 1 | V/µs | | VI | Input voltage | V _{S-} - 0.5 V _{S+} + 0.5 | V | | V _{ID} | Differential input voltage | ±1 | V | | I _I | Continuous input current | ±10 | mA | | Io | Continuous output current ⁽³⁾ | ±20 | mA | | | Continuous power dissipation | See セクション 7.4 | | | T _J | Maximum junction temperature | 150 | °C | | T _A | Operating free-air temperature | -40 125 | °C | | T _{stg} | Storage temperature | -65 150 | °C | - (1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. - (2) Stay below this ± supply turn-on edge rate to prevent the edge-triggered ESD absorption device across the supply pins from turning on. - (3) Long-term continuous output current for electromigration limits. #### 7.2 ESD Ratings | | | | VALUE | UNIT | |--------------------|-------------------------|--|-------|-------| | V | Electrostatic discharge | Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾ | ±1500 | V | | V _(ESD) | Liectrostatic discharge | Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾ | ±1000 | \
 | - (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. - (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. #### 7.3 Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted) | | | MIN | NOM | MAX | UNIT | |-----------------|-----------------------|-----|-----|-----|------| | V _{S+} | Single-supply voltage | 2.7 | 5 | 5.4 | V | | T _A | Ambient temperature | -40 | 25 | 125 | °C | ### 7.4 Thermal Information | | | OPA838 | | | | | |--|--|-----------------|---------------|----------------|------|--| | THERMAL METRIC(1) Roya Junction-to-ambient thermal resistance | | DBV
(SOT-23) | DCK
(SC70) | DCKS
(SC70) | UNIT | | | | | 6 PINS | 5 PINS | 6 PINS | | | | R _{θJA} | Junction-to-ambient thermal resistance | 194 | 203 | 189 | °C/W | | | R ₀ JCtop | Junction-to-case (top) thermal resistance | 129 | 152 | 150 | °C/W | | | $R_{\theta JB}$ | Junction-to-board thermal resistance | 39 | 76 | 79 | °C/W | | | ΨЈТ | Junction-to-top characterization parameter | 26 | 58 | 61 | °C/W | | | ΨЈВ | Junction-to-board characterization parameter | 39 | 76 | 79 | °C/W | | (1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report. 資料に関するフィードバック(ご意見やお問い合わせ)を送信 Copyright © 2023 Texas Instruments Incorporated ### 7.5 Electrical Characteristics: $V_S = 5 V$ at V_{S+} = 5 V, V_{S-} = 0 V, R_F = 1 k Ω , R_G = 200 Ω , R_L = 2 k Ω , G = 6 V/V, input and output referenced to midsupply, and $T_A \approx 25^{\circ}C$, (unless otherwise noted) | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX |
UNIT | TEST
LEVEL ⁽¹⁾ | |---------------------------------|---|--|------|------|-----|--------------------|------------------------------| | AC PERF | FORMANCE | | • | | | | - | | | | V _{OUT} = 20 mV _{PP} , G = 6, (peaking < 4 dB) | 75 | 90 | | | С | | SSBW | Small-signal bandwidth | $V_{OUT} = 20 \text{ mV}_{PP}, G = 10, R_F = 1.6 \text{ k}\Omega$ | | 50 | | MHz | С | | | | $V_{OUT} = 20 \text{ mV}_{PP}, G = 100, R_F = 16.9 \text{ k}\Omega$ | | 3 | | | С | | GBP | Gain-bandwidth product | V _{OUT} = 20 mV _{PP} , G = 100 | 240 | 300 | | MHz | С | | LSBW | Large-signal bandwidth | V _{OUT} = 2 V _{PP} , G = 6 | | 45 | | MHz | С | | | Bandwidth for 0.1-dB flatness | V _{OUT} = 200 mV _{PP} , G = 6 | | 10 | | MHz | С | | SR | Slew rate | From LSBW ⁽²⁾ | 250 | 350 | | V/µs | С | | | Overshoot, undershoot | V _{OUT} = 2-V step, G = 6, input t _R = 12 ns | | 1% | 2% | | С | | t _R , t _F | Rise, fall time | V_{OUT} = 2-V step, G = 6, R _L = 2 kΩ, input t _R = 12 ns | | 12.5 | 13 | ns | С | | | Settling time to 0.1% | V _{OUT} = 2-V step, G = 6, input t _R = 12 ns | | 30 | | ns | С | | | Settling time to 0.01% | V _{OUT} = 2-V step, G = 6, input t _R = 12 ns | | 40 | | ns | С | | HD2 | Second-order harmonic distortion | f = 100 kHz, V _O = 4 V _{PP} , G = 6 (see ⊠ 9-1) | | -110 | | dBc | С | | HD3 | Third-order harmonic distortion | f = 100 kHz, V _O = 4 V _{PP} , G = 6 (see ⊠ 9-1) | | -120 | | dBc | С | | | Input voltage noise | f > 1 kHz | | 1.8 | | nV/√ Hz | С | | | Voltage noise 1/f corner frequency | | | 100 | | Hz | С | | | Input current noise | f > 100 kHz | | 1 | | pA/√ Hz | С | | | Current noise 1/f corner frequency | | | 7 | | kHz | С | | | Overdrive recovery time | G = 6, 2 × output overdrive, DC-coupled | | 50 | | ns | С | | | Closed-loop output impedance | f = 1 MHz, G = 6 | | 0.3 | | Ω | С | | DC PERF | FORMANCE | | | | | | | | A _{OL} | Open-loop voltage gain | $V_O = \pm 2 \text{ V}, R_L = 2 \text{ k}\Omega$ | 120 | 125 | | dB | А | | | | T _A ≈ 25°C | -125 | ±15 | 125 | | Α | | | | T _A = 0°C to 70°C | -165 | ±15 | 200 | ., | В | | | Input-referred offset voltage | T _A = -40°C to +85°C | -230 | ±15 | 220 | μV | В | | | | T _A = -40°C to +125°C | -230 | ±15 | 285 | | В | | | Input offset voltage drift ⁽⁵⁾ | $T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}^{(4)}$ | -1.6 | ±0.4 | 1.6 | μV/°C | В | | | | T _A ≈ 25°C | 0.7 | 1.5 | 2.8 | | Α | | | (3) | T _A = 0°C to 70°C | .2 | 1.5 | 3.5 | | В | | | Input bias current ⁽³⁾ | T _A = -40°C to +85°C | .2 | 1.5 | 3.7 | μA | В | | | | T _A = -40°C to +125°C | .2 | 1.5 | 4.4 | | В | | | Input bias current drift ⁽⁵⁾ | T _A = -40°C to +125°C | 4.5 | 7.8 | 17 | nA/°C | В | | | | T _A ≈ 25°C | -70 | ±20 | 70 | | Α | | | l | T _A = 0°C to 70°C | -83 | ±20 | 93 | A | В | | | Input offset current | T _A = -40°C to +85°C | -105 | ±20 | 100 | nA | В | | | | T _A = -40°C to +125°C | -105 | ±20 | 120 | | В | | | Input offset current drift ⁽⁵⁾ | T _A = -40°C to +125°C | -500 | ±40 | 500 | pA/°C | В | 資料に関するフィードバック(ご意見やお問い合わせ)を送信 5 ### 7.5 Electrical Characteristics: V_S = 5 V (続き) at V_{S+} = 5 V, V_{S-} = 0 V, R_F = 1 k Ω , R_G = 200 Ω , R_L = 2 k Ω , G = 6 V/V, input and output referenced to midsupply, and $T_A \approx 25^{\circ}C$, (unless otherwise noted) | | PARAMETER | TEST CONDITIONS | MIN | ТҮР | MAX | UNIT | TEST
LEVEL ⁽¹⁾ | |-----------------|---|---|-----------------------|------------------------|-----------------------|----------|------------------------------| | INPUT | | | | | | | • | | | Common mode input range law | T _A ≈ 25°C, CMRR > 92 dB | | V _S 0.2 | V _{S-} - 0 | V | Α | | | Common-mode input range, low | T _A = -40°C to +125°C, CMRR > 92 dB | | V _{S-} - 0 | | V | В | | | O bi-b | T _A ≈ 25°C, CMRR > 92 dB | V _{S+} – 1.3 | V _{S+} – 1.2 | | V | Α | | | Common-mode input range, high | T _A = -40°C to +125°C, CMRR > 92 dB | | V _{S+} – 1.3 | | V | В | | CMRR | Common-mode rejection ratio | | 95 | 105 | | dB | Α | | | Input impedance common-mode | | | 35 1 | | MΩ pF | С | | | Input impedance differential mode | | | 30 1.3 | | kΩ pF | С | | OUTPUT | | 1 | | | | | | | ., | | T _A ≈ 25°C, G = 6 | | V _{S-} + 0.05 | V _{S-} + 0.1 | V | А | | V _{OL} | Output voltage, low | T _A = -40°C to +125°C, G = 6 | | V _{S-} + 0.05 | V _{S-} + 0.1 | V | В | | ., | | T _A ≈ 25°C, G = 6 | V _{S+} - 0.1 | V _{S+} - 0.05 | | ., | А | | V_{OH} | Output voltage, high | T _A = -40°C to +125°C, G = 6 | V _{S+} - 0.2 | V _{S+} - 0.1 | | V | В | | | Maximum current into a resistive load | T _A ≈ 25°C, ±1.53 V into 41.3 Ω, V _{IO} < 2 mV | ±35 | ±40 | | mA | А | | | | T _A ≈ 25°C, ±1.81 V into 70.6 Ω, A _{OL} > 80 dB | ±25 | ±28 | | mA | А | | | Linear current into a resistive load | T_A = -40°C to +125°C, ±1.58 V into 70.6 Ω, A_{OL} > 80 dB | ±22 | ±25 | | | В | | | DC output impedance | G = 6 | | 0.02 | | Ω | С | | POWER | SUPPLY | | | | | | | | | Specified operating voltage | | 2.7 | 5 | 5.4 | V | В | | | | T _A ≈ 25°C ⁽⁶⁾ | 913 | 960 | 1025 | | А | | | Quiescent operating current | T _A = -40°C to +125°C | 700 | 960 | 1365 | μA | В | | dlq/dT | Quiescent current temperature coefficient | T _A = -40°C to +125°C | 2.6 | 3 | 3.4 | μΑ/°C | В | | +PSRR | Positive power-supply rejection ratio | | 98 | 110 | | dB | А | | -PSRR | Negative power-supply rejection ratio | | 93 | 105 | | dB | А | | POWER I | DOWN (Pin Must be Driven, SOT23-6 | and SC70-6) | | | | | | | | Enable voltage threshold | Specified <i>on</i> above V _S _+ 1.5 V | 1.5 | | | V | Α | | | Disable voltage threshold | Specified off below V _S _+ 0.55 V | | | 0.55 | ٧ | Α | | | Disable pin bias current | $\overline{PD} = V_{S-}$ to V_{S+} | -50 | 20 | 50 | nA | Α | | | Power-down quiescent current | PD = 0.55 V | | 0.1 | 1 | μA | Α | | | Turn-on time delay | Time from PD = high to V _{OUT} = 90% of final value | | 1.7 | | μs | С | | | Turn-off time delay | Time from PD = low to V _{OUT} = 10% of original value | | 100 | | ns | С | - (1) Test levels (all values set by characterization and simulation): (A) 100% tested at 25°C, overtemperature limits by characterization and simulation; (B) Not tested in production, limits set by characterization and simulation; (C) Typical value only for information. - (2) This slew rate is the average of the rising and falling time estimated from the large-signal bandwidth as: $(0.8 \times V_{PEAK} / \sqrt{2}) \times 2\pi \times f_{-3dB}$ where this f_{-3dB} is the typical measured 4-V_{PP} bandwidth at gains of 6 V/V. - (3) Current is considered positive out of the pin. - (4) Input offset voltage drift, input bias current drift, and input offset current drift typical specifications are mean ± 1σ characterized by the full temperature range end-point data. Maximum drift specifications are set by the min, max packaged test range on the wafer-level screened drift. Drift is not specified by the final automated test equipment (ATE) or by QA sample testing. - (5) Input offset voltage drift, input bias current drift, and input offset current drift are average values calculated by taking data at the end points, computing the difference, and dividing by the temperature range. - (6) The typical specification is at 25°C T_J. The minimum and maximum limits are expanded for the ATE to account for an ambient range from 22°C to 32°C with a 4-μA/°C temperature coefficient on the supply current. 資料に関するフィードバック(ご意見やお問い合わせ) を送信 Copyright © 2023 Texas Instruments Incorporated # 7.6 Electrical Characteristics: $V_S = 3 V$ at V_{S+} = 3 V, V_{S-} = 0 V, R_F = 1 k Ω , R_G = 200 Ω , R_L = 2 k Ω , G = 6 V/V, input and output referenced to midsupply, and $T_A \approx 25^{\circ}C$, (unless otherwise noted) | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | TEST
LEVEL ⁽¹⁾ | |---------------------------------|---|---|------|------|-----|--------------------|------------------------------| | AC PERF | FORMANCE | | | | | | | | | | V _{OUT} = 20 mV _{PP} , G = 6 (peaking < 4 dB) | 70 | 86 | | MHz | С | | SSBW | Small-signal bandwidth | $V_{OUT} = 20 \text{ mV}_{PP}, G = 10, R_F = 1.6 \text{ k}\Omega$ | | 50 | | | С | | | | $V_{OUT} = 20 \text{ mV}_{PP}, G = 100, R_F = 16.9 \text{ k}\Omega$ | | 3 | | | С | | GBP | Gain-bandwidth product | V _{OUT} = 20 mV _{PP} , G = 100 | 240 | 300 | | MHz | С | | LSBW | Large-signal bandwidth | V _{OUT} = 2 V _{PP} , G = 6 | | 45 | | MHz | С | | | Bandwidth for 0.1-dB flatness | V _{OUT} = 200 mV _{PP} , G = 6 | | 9 | | MHz | С | | SR | Slew rate | From LSBW ⁽²⁾ | 250 | 350 | | V/µs | С | | | Overshoot, undershoot | V _{OUT} = 1-V step, G = 6, input t _R = 6 ns | | 2% | 4% | | С | | t _R , t _F | Rise, fall time | V _{OUT} = 1-V step, G = 6, input t _R = 6 ns | | 6.3 | 7 | ns | С | | | Settling time to 0.1% | V _{OUT} = 1-V step, G = 6, input t _R = 6 ns | | 30 | | ns | С | | | Settling time to 0.01% | V _{OUT} = 1-V step, G = 6, input t _R = 6 ns | | 40 | | ns | С | | HD2 | Second-order harmonic distortion | f = 100 kHz, V _O = 2 V _{PP} , G = 6 (see ⊠ 9-1) | | -108 | | dBc | С | | HD3 | Third-order harmonic distortion | f = 100 kHz, V _O = 2 V _{PP} , G = 6 (see ⊠ 9-1) | | -125 | | dBc | С | | | Input voltage noise | f > 1 kHz | | 1.8 | | nV/√ Hz | С | | | Voltage noise 1/f corner frequency | | | 100 | | Hz | С | | | Input current noise | f > 100 kHz | | 1.0 | | pA/√ Hz | С | | | Current noise 1/f corner frequency | | | 7 | | kHz | С | | | Overdrive recovery time | G = 6, 2 × output overdrive, DC-coupled | | 50 | | ns | С | | | Closed-loop output impedance | f = 1 MHz, G = 6 | | 0.3 | | Ω | С | | DC PERF |
FORMANCE | | | | | | | | A _{OL} | Open-loop voltage gain | $V_O = \pm 1 \text{ V}, R_L = 2 \text{ k}\Omega$ | 110 | 125 | | dB | Α | | | | T _A ≈ 25°C | -125 | ±15 | 125 | | Α | | | | T _A = 0°C to 70°C | -165 | ±15 | 200 | ., | В | | | Input-referred offset voltage | T _A = -40°C to +85°C | -230 | ±15 | 220 | μV | В | | | | T _A = -40°C to +125°C | -230 | ±15 | 285 | | В | | | Input offset voltage drift ⁽⁵⁾ | $T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}^{(4)}$ | -1.6 | ±0.4 | 1.6 | μV/°C | В | | | | T _A ≈ 25°C | .7 | 1.5 | 2.8 | | Α | | | I | T _A = 0°C to 70°C | .2 | 1.5 | 3.5 | | В | | | Input bias current ⁽³⁾ | T _A = -40°C to +85°C | .2 | 1.5 | 3.7 | μA | В | | | | T _A = -40°C to +125°C | .2 | 1.5 | 4.4 | | В | | | Input bias current drift ⁽⁵⁾ | T _A = -40°C to +125°C | 4.5 | 7.8 | 17 | nA/°C | В | | | | T _A ≈ 25°C | -70 | ±20 | 70 | | Α | | | l | T _A = 0°C to 70°C | -83 | ±20 | 93 | A | В | | | Input offset current | T _A = -40°C to +85°C | -105 | ±20 | 100 | nA | В | | | | T _A = -40°C to +125°C | -105 | ±13 | 120 | 1 | В | | | Input offset current drift ⁽⁵⁾ | T _A = -40°C to +125°C | -500 | ±20 | 500 | pA/°C | В | 資料に関するフィードバック(ご意見やお問い合わせ)を送信 1 Product Folder Links: OPA838 ### 7.6 Electrical Characteristics: V_S = 3 V (続き) at V_{S+} = 3 V, V_{S-} = 0 V, R_F = 1 k Ω , R_G = 200 Ω , R_L = 2 k Ω , G = 6 V/V, input and output referenced to midsupply, and $T_A \approx 25^{\circ}C$, (unless otherwise noted) | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | TEST
LEVEL ⁽¹⁾ | |-----------------|---|---|-----------------------|------------------------|-----------------------|----------|------------------------------| | INPUT | | | • | | | | • | | | Common mode input range law | $T_A \approx 25^{\circ}\text{C}$, CMRR > 92 dB $V_{S-} = 0.3$ | | V _{S-} - 0.2 | V _{S-} - 0 | V | Α | | | Common-mode input range, low | $T_A = -40$ °C to +125°C, CMRR > 92 dB | | V _{S-} - 0 | | V | В | | | O bi-b | T _A ≈ 25°C, CMRR > 92 dB | V _{S+} – 1.3 | V _{S+} – 1.2 | | V | Α | | | Common-mode input range, high | $T_A = -40$ °C to +125°C, CMRR > 92 dB | | V _{S+} – 1.3 | | | В | | CMRR | Common-mode rejection ratio | | 95 | 105 | | dB | Α | | | Input impedance common-mode | | | 55 1.1 | | MΩ pF | С | | | Input impedance differential mode | | | 30 1.3 | | kΩ pF | С | | OUTPUT | | 1 | | | | | | | ., | | T _A ≈ 25°C, G = 6 | | V _{S-} + 0.05 | V _{S-} + 0.1 | | Α | | V _{OL} | Output voltage, low | T _A = -40°C to +125°C, G = 6 | | V _{S-} + 0.1 | V _{S-} + 0.2 | V | В | | ., | | T _A ≈ 25°C, G = 6 | V _{S+} - 0.1 | V _{S+} - 0.05 | | ., | А | | V _{OH} | Output voltage, high | T _A = -40°C to +125°C, G = 6 | V _{S+} - 0.2 | V _{S+} - 0.1 | | V | В | | | Maximum current into a resistive load | ±28 | ±30 | | mA | А | | | | | T _A ≈ 25°C, ±0.88 V into 37 Ω, A _{OL} > 70 dB | ±23 | ±25 | | , | А | | | Linear current into a resistive load | T_A = -40°C to +125°C, ±0.76 V into 37 Ω, A_{OL} > 70 dB | ±20 | ±23 | | mA | В | | | DC output impedance | G = 6 | | 0.02 | | Ω | С | | POWER S | SUPPLY | | | | | | | | | Specified operating voltage | | 2.7 | 5 | 5.4 | V | В | | | | T _A ≈ 25°C ⁽⁶⁾ | 890 | 930 | 1025 | | А | | | Quiescent operating current | T _A = -40°C to +125°C | 680 | 930 | 1350 | μA | В | | dlq/dT | Quiescent current temperature coefficient | T _A = -40°C to +125°C | 2.2 | 2.7 | 3.2 | μΑ/°C | В | | +PSRR | Positive power-supply rejection ratio | | 95 | 110 | | dB | А | | -PSRR | Negative power-supply rejection ratio | | 90 | 105 | | dB | А | | POWER I | DOWN (Pin Must be Driven, SOT23-6 | and SC70-6) | | | | | | | | Enable voltage threshold | Specified <i>on</i> above V _{S-} + 1.5 V | 1.5 | | | V | Α | | | Disable voltage threshold | Specified off below V _S _ + 0.55 V | | | 0.55 | ٧ | Α | | | Disable pin bias current | $\overline{PD} = V_{S-}$ to V_{S+} | -50 | 20 | 50 | nA | Α | | | Power-down quiescent current | PD = 0.55 V | | 0.1 | 1 | μA | Α | | | Turn-on time delay | Time from PD = high to V _{OUT} = 90% of final value | | 3.5 | | μs | С | | | Turn-off time delay | Time from \overline{PD} = low to V _{OUT} = 10% of original value | | 100 | | ns | С | - (1) Test levels (all values set by characterization and simulation): (A) 100% tested at 25°C, overtemperature limits by characterization and simulation; (B) Not tested in production, limits set by characterization and simulation; (C) Typical value only for information. - (2) This slew rate is the average of the rising and falling time estimated from the large-signal bandwidth as: $(0.8 \times V_{PEAK} / \sqrt{2}) \times 2\pi \times f_{-3dB}$ where this f_{-3dB} is the typical measured 2-V_{PP} bandwidth at gains of 6 V/V. - (3) Current is considered positive out of the pin. - (4) Input offset voltage drift, input bias current drift, and input offset current drift typical specifications are mean ± 1σ characterized by the full temperature range end-point data. Maximum drift specifications are set by the min, max packaged test range on the wafer-level screened drift. Drift is not specified by the final automated test equipment (ATE) or by QA sample testing. - (5) Input offset voltage drift, input bias current drift, and input offset current drift are average values calculated by taking data at the end points, computing the difference, and dividing by the temperature range. - (6) The typical specification is at 25°C T_J. The minimum and maximum limits are expanded for the ATE to account for an ambient range from 22°C to 32°C with a 4-μΑ/°C temperature coefficient on the supply current. 資料に関するフィードバック(ご意見やお問い合わせ)を送信 Copyright © 2023 Texas Instruments Incorporated 8 ### 7.7 Typical Characteristics: $V_S = 5 V$ at V_{S+} = 5 V, V_{S-} = 0 V, R_F = 1 k Ω , R_G = 200 Ω , R_L = 2 k Ω , G = 6 V/V, input and output referenced to midsupply, and $T_A \approx 25^{\circ}$ C (unless otherwise noted) ### 7.7 Typical Characteristics: $V_S = 5 V$ (continued) at V_{S+} = 5 V, V_{S-} = 0 V, R_F = 1 k Ω , R_G = 200 Ω , R_L = 2 k Ω , G = 6 V/V, input and output referenced to midsupply, and $T_A \approx 25^{\circ}\text{C}$ (unless otherwise noted) ### 7.7 Typical Characteristics: $V_S = 5 V$ (continued) at V_{S+} = 5 V, V_{S-} = 0 V, R_F = 1 k Ω , R_G = 200 Ω , R_L = 2 k Ω , G = 6 V/V, input and output referenced to midsupply, and $T_A \approx 25^{\circ}C$ (unless otherwise noted) ### 7.7 Typical Characteristics: $V_S = 5 \text{ V}$ (continued) at V_{S+} = 5 V, V_{S-} = 0 V, R_F = 1 k Ω , R_G = 200 Ω , R_L = 2 k Ω , G = 6 V/V, input and output referenced to midsupply, and $T_A \approx 25^{\circ}C$ (unless otherwise noted) 図 7-18. Inverting Distortion vs Output Common-Mode Voltage ### 7.8 Typical Characteristics: $V_S = 3 V$ at V_{S+} = 3 V, V_{S-} = 0 V, R_F = 1 k Ω , R_G = 200 Ω , R_L = 2 k Ω , G = 6 V/V, input and output referenced to midsupply, and T_A = 25°C (unless otherwise noted) ### 7.8 Typical Characteristics: $V_S = 3 V$ (continued) at V_{S+} = 3 V, V_{S-} = 0 V, R_F = 1 k Ω , R_G = 200 Ω , R_L = 2 k Ω , G = 6 V/V, input and output referenced to midsupply, and T_A = 25°C (unless otherwise noted) ### 7.8 Typical Characteristics: V_S = 3 V (continued) at V_{S+} = 3 V, V_{S-} = 0 V, R_F = 1 k Ω , R_G = 200 Ω , R_L = 2 k Ω , G = 6 V/V, input and output referenced to midsupply, and T_A = 25°C (unless otherwise noted) ### 7.9 Typical Characteristics: Over Supply Range ### **8 Detailed Description** #### 8.1 Overview The OPA838 is a power-efficient, decompensated, voltage-feedback amplifier (VFA). Combining a negative-rail input stage and a rail-to-rail output (RRO) stage, the device provides a flexible option where higher gain or transimpedance designs are required. This 300-MHz gain-bandwidth product (GBP) amplifier requires less than 1 mA of supply current over a 2.7-V to 5.4-V total supply operating range. A shutdown feature on the 6-pin package versions provides power savings where the system requires less than 1 μ A when shut down. A decompensated amplifier operating at low gains (less than 6 V/V) can experience a low phase margin that risks oscillation. The TINA model for the OPA838 predicts those conditions. ### 8.2 Functional Block Diagram The OPA838 is a standard voltage-feedback op amp with two high-impedance inputs and a low-impedance output. Standard applications circuits are supported; see \boxtimes 8-1 and \boxtimes 8-2. These application circuits are shown with a dc V_{REF} on the inputs that set the dc operating points for single-supply designs. The V_{REF} is often ground, especially for split-supply applications. 図 8-1. Noninverting Amplifier 図 8-2. Inverting Amplifier 21 Product Folder Links: OPA838 #### 8.3 Feature Description #### 8.3.1 Input Common-Mode Voltage Range When the primary design goal is a linear amplifier with high CMRR, the input pins must stay within the input operating range (V_{ICR}). These input pins are referenced off of each supply as an input headroom requirement. Specified operation at 25°C is maintained to the negative supply voltage, and to within 1.3 V of the positive supply voltage. The common-mode input range specifications in the table data use CMRR to set the limit. The limits are selected to make sure CMRR does not degrade more than 3 dB less than the minimum CMRR value if the input voltage is within the specified range. During linear operation, the voltage difference between the input pins is small (0 V) and the input common-mode voltage is analyzed at either input pin, as both pins are at the same potential. The voltage at V_{IN+} is simple to evaluate. In noninverting configuration (see \boxtimes 8-1), the input signal (
V_{IN}) must not violate the V_{ICR} . In inverting configuration (see \boxtimes 8-2), the reference voltage (V_{REF}), must be within the V_{ICR} . The input voltage limits have fixed headroom to the power rails and track the power supply voltages. For a single 5-V supply, the linear 25°C minimum input voltage ranges from 0 V to 3.7 V, and 0 V to 1.4 V for a single 2.7-V supply. The delta headroom from each power supply rail is the same in each case (0 V and 1.3 V). #### 8.3.2 Output Voltage Range The OPA838 device is a rail-to-rail output op amp. Rail-to-rail output typically means that the output voltage swings to within 100 mV of the supply rails. There are different ways to specify this: one is with the output still in linear operation and another is with the output saturated. Saturated output voltages are closer to the power supply rails than linear outputs, but the signal is not a linear representation of the input. Saturation and linear operation limits are affected by the output current, where higher currents lead to more voltage loss in the output transistors; see $\boxed{2}$ 7-56. The specification tables show saturated output voltage specifications with a 2-k Ω load. \boxtimes 7-11 and \boxtimes 7-43 illustrate saturated voltage-swing limits versus output load resistance, and \boxtimes 7-12 and \boxtimes 7-44 illustrate the output saturation voltage versus load current. With a light load, the output voltage limits have constant headroom to the power rails and track the power supply voltages. For example, with a 1-k Ω load and a single 5-V supply, the linear output voltage ranges from 0.12 V to 4.88 V and ranges from 0.12 V to 2.58 V for a 2.7-V supply. The delta from each power supply rail is the same in each case: 0.12 V. With devices like the OPA838 where the input range is lower than the output range, the input limits the available signal swing at low gains. Because the OPA838 is intended for higher gains, the smaller input swing range does not limit operation and full rail-to-rail output is available. Inverting voltage gain and transimpedance configurations are typically limited by the output voltage limits of the op amp if the noninverting input pin is biased in range. #### 8.3.3 Power-Down Operation The OPA838 includes a power-down feature. Under logic control, the amplifier can switch from normal operation to a standby current of less than 1 μ A. When the \overline{PD} pin is connected high (greater than or equal to 1.5 V over the negative supply), the amplifier is active. Connecting the \overline{PD} pin low (less than or equal to 0.55 V over the negative supply) disables the amplifier. To protect the input stage of the amplifier, the device uses internal, back-to-back diodes (two in series each way) between the inverting and noninverting input pins. If the differential voltage in shutdown exceeds 1.2 V, those diodes turn on. Actively drive the \overline{PD} pin high or low; do not float this pin. If the power-down mode is not used, tie the \overline{PD} pin to the positive supply rail. When the op amp is powered from a single-supply and ground, with \overline{PD} driven from logic devices with similar V_{DD} voltages to the op amp, no special considerations are required. When the op amp is powered from a split-supply with V_{S-} less than ground, an open-collector type of interface with a pullup resistor is more appropriate. Pullup resistor values must be less than 100 k Ω . Recovery from power down is illustrated in \boxtimes 7-53 and \boxtimes 7-54 for several gains. In single-supply mode, with the gain resistor at ground, the output approaches the positive 資料に関するフィードバック (ご意見やお問い合わせ) を送信 Copyright © 2023 Texas Instruments Incorporated supply on initial power-up until the internal nodes charge, and then recover to the target output voltage; see \boxtimes 7-51 and \boxtimes 7-52. #### 8.3.4 Trade-Offs in Selecting The Feedback Resistor Value The OPA838 is specified using a 1-k Ω feedback resistor with a 200- Ω gain resistor to ground in a noninverting gain of 6 V/V configuration. These values give a good compromise, keeping the noise contribution of the resistors well below that of the amplifier noise terms and minimal power in the feedback network as the output voltage swing creates load current back into the feedback network. Decreasing these values improves the noise at the cost of more power dissipated in the feedback network. Low values increase the harmonic distortion as the feedback load decreases. Increasing the R_F value at a particular gain increases the output noise contribution of those resistors possibly becoming dominant. As the feedback resistor values continue to increase (and the R_G at a fixed target gain), there is a loss of phase margin as the impedance that drives the inverting input capacitance brings in an added loop pole at lower frequencies. \boxtimes 8-3 shows this at a gain of 6 V/V with increasing R_F values. This noninverting test shows more peaking as the R_F values increase due to the 1-pF common-mode input capacitance at the inverting input. The TINA simulation model gives excellent prediction of these effects. 図 8-3. Frequency Response With Various Feedback Resistor Values Operating the OPA838 in inverting mode with higher R_F values increases response peaking due to the loss of phase margin effect. In the inverting case, a pair of capacitors can flatten the response at the cost of lower closed-loop bandwidth. \boxtimes 8-4 shows an example with a 20-k Ω R_F value at an inverting gain of -5 V/V (noise gain = 6 V/V) with optional capacitors (C_F and C_G). \boxtimes 8-4 shows optional bias current cancellation elements on the noninverting input. The total resistance value matches the parallel combination of $R_G \parallel R_F$, which reduces the DC output error term due to bias current to $I_{OS} \times R_F$. The 10-nF capacitor is added across the larger part of this bias current canceling resistance to filter noise and the 20 Ω is split out to isolate the capacitor self resonance from the noninverting input. \boxtimes 8-5 illustrates the small-signal response shape with and without these capacitors. The feedback capacitor (C_F), is selected to set a desired closed-loop bandwidth with R_F . R_F is added to ground to shape the noise gain up over frequency to be greater than or equal to 6 V/V at higher frequencies. In this example, that higher frequency noise gain is 1 + 6 / 1.2 = 6 V/V, adding the 1-pF device common-mode capacitance to the external 5 pF. Using the capacitors to set the feedback ratio removes the pole produced in the feedback driving from purely resistive source to the inverting parasitic capacitance. 図 8-5. Inverting Response With and Without Compensation 資料に関するフィードバック (ご意見やお問い合わせ) を送信 Copyright © 2023 Texas Instruments Incorporated #### 8.3.5 Driving Capacitive Loads The OPA838 can drive small capacitive loads directly without oscillation (less than 6@pF). When driving capacitive loads greater than 6 pF, \boxtimes 7-49 illustrates the recommended R_{OUT} vs capacitor load parametric on gains. At higher gains, the amplifier starts with greater phase margin into a resistive load and can operate with lower R_{OUT} for a given capacitive load. Without R_{OUT}, output capacitance interacts with the output impedance of the amplifier, which causes phase shift in the loop gain of the amplifier that reduces the phase margin. This causes peaking in the frequency response with overshoot and ringing in the pulse response. \boxtimes 7-49 targets a 30° phase margin for the OPA838. A 30° phase margin produces a 5.7-dB peaking in the frequency response at the amplifier output pin that is rolled off by the output RC pole; see \boxtimes 8-7. This peaking can cause clipping for large signals driving a capacitive load. Increasing the R_{OUT} value can reduce the peaking at the cost of a more band-limited overall response. 図 8-6. R_{OUT} versus C_L Test Circuit 図 8-7. Frequency Response to Output Pin and Capacitive Load #### 8.4 Device Functional Modes #### 8.4.1 Split-Supply Operation (±1.35 V to ±2.7 V) To facilitate testing with common lab equipment, the OPA838 EVM (see EVM board link) is built to allow split-supply operation. This configuration eases lab testing because the midpoint between the power rails is ground, and most signal generators, network analyzers, oscilloscopes, spectrum analyzers, and other lab equipment have inputs and outputs with a ground reference. This simplifies characterization by removing the requirement for blocking capacitors. Copyright © 2023 Texas Instruments Incorporated 資料に関するフィードバック(ご意見やお問い合わせ)を送信 25 \boxtimes 8-8 shows a simple noninverting configuration analogous to \boxtimes 8-1 with a ± 2.5 -V supply and V_{REF} equal to ground. The input and output swing symmetrically around ground. For ease of use, split-supplies are preferred in systems where signals swing around ground. Using bipolar (or split) supplies shifts the thresholds for the shutdown control. The disable control is referenced from the negative supply, typically ground, in a single-supply application. However, to disable using a negative supply requires that the pin is set to within 0.55 V greater than the negative supply. If disable is not required, connect that pin to the positive supply to maintain correct operation, even for split-supply applications. Do not float the disable pin; assert the pin to a voltage. 図 8-8. Split-Supply Operation ☑ 8-9. Bipolar-Supply Step Response ### 8.4.2 Single-Supply Operation (2.7 V to 5.4 V) Most newer systems use a single power supply to improve efficiency and to simplify power supply design. The OPA838 can be used with single-supply power (ground for the negative supply) with no change in performance from split supply, as long as the input and output pins are biased within the linear
operating region of the device. The outputs nominally swing rail-to-rail with approximately a 100-mV headroom required for linear operation. The inputs can swing below the negative rail (typically ground) and to within 1.3 V of the positive supply. For dccoupled, single-supply operation, the higher-gain operating applications typical of a decompensated op amp keep the input swings less than the input swing limit to the positive supply. Typically, the 1.3-V input headroom required to the positive supply does not limit operation. $\ensuremath{\,\mathbb{Z}\xspace}$ 8-10 shows an example design that takes a 0-V to 0.5-V input range, level shifts the output up to 0.15 V for a 0-V input using the 4.5-V reference voltage common for 5-V SAR ADCs, and sets the gain to produce a 4.1-V output swing for the 0.5-V input swing. This example assumes a 0-Ω source that is required to sink the 39 μA Copyright © 2023 Texas Instruments Incorporated required to bias the positive input pin to produce the 0.15-V output for a 0-V input. The R_F and R_G values are scaled down slightly to provide bias current cancellation by matching the parallel combination of the two bias setup resistors on the noninverting input. \boxtimes 8-11 illustrates an example step response for this circuit that produces an output from 0.15 V for a 0-V input to 4.35 V for a 0.5-V input. 図 8-10. DC-Coupled, Single-Supply, Noninverting Interface With Output Level Shift 図 8-11. Unipolar Input to Level Shifted Output Step Response If ac-coupling is acceptable, a simple way to operate single-supply is to run inverting. \boxtimes 8-12 shows a low-power, high-gain example. In this example, a gain of -20~V/V is implemented (inverting usually does not matter for ac-coupled channels) where the V+ input is biased midscale. This example is showing an optional biascurrent cancellation setup, which is not necessary unless the output dc level requires good accuracy. The parallel combination of the divider resistors plus the $80.7-\Omega$ isolating resistor match the feedback resistor value. With the blocking capacitor at the inverting input, the feedback resistor impedance must be matched to achieve bias current cancellation. In this 3-V supply example, the two inputs and the output are biased at 1.5 V. This places the input pins in range and centers the output for maximum V $_{PP}$ available. \boxtimes 8-13 illustrates the small-signal response for this example showing a f_{-3dB} range from a low-end cutoff of 887 Hz set by the input capacitor value to a 17.5-MHz high-frequency cutoff. 27 Product Folder Links: OPA838 図 8-12. Single-Supply Inverting Gain Stage With AC-Coupled Input ☑ 8-13. Inverting Single-Supply Response With AC-Coupled Input These are only two of the many ways a single-supply design can be implemented. Many other methods exist, where using a dc reference voltage or ac-coupling are common. A good compilation of options can be found in Single-Supply Op Amp Design Techniques. #### 8.4.3 Power Shutdown Operation As noted, the 6-pin packages that offer a power-shutdown feature must have that pin asserted. To retain the lowest possible shutdown power, no internal pullup resistors are present in the OPA838. The control threshold is referenced off the negative supply with a nominal internal threshold near 1 V greater than the negative supply. Worst-case tolerances dictate the required low-level voltage to provide a shutdown of 0.55 V (or less) greater than the negative supply, and 1.5 V (or more) greater than the negative supply to maintain enabled operation. The required control pin current is less than ± 50 nA. For SOT-23-6 applications that do not require a shutdown functionality, connect the disable control pin to the positive supply. For SC70 package applications that do not require a shutdown, use the 5-pin package where the control pad is internally connected to the positive supply. When disabled, the output nominally goes to a high-impedance state. However, the feedback network provides a path for discharge for an off-state voltage condition. $\boxed{2}$ 7-51 illustrates the turn-on time with a sinusoidal input that is relatively slow, while $\boxed{2}$ 7-52 illustrates the turn-off time is fast. $\boxed{2}$ 7-53 and $\boxed{2}$ 7-54 illustrate the single-supply operation with a dc input to produce a midsupply output at gains of 6 V/V and 10 V/V. In all cases, the output voltage transitions to a point close to the positive supply voltage and then moves to the desired output voltage 0.5 μ s to 1.5 μ s after the disable control line goes high. The supply current in shutdown is a low 0.1 μ A nominally with a maximum 1 μ A. Copyright © 2023 Texas Instruments Incorporated ### 9 Application and Implementation 注 以下のアプリケーション情報は、TIの製品仕様に含まれるものではなく、TIではその正確性または完全性を保証いたしません。個々の目的に対する製品の適合性については、お客様の責任で判断していただくことになります。お客様は自身の設計実装を検証しテストすることで、システムの機能を確認する必要があります。 #### 9.1 Application Information #### 9.1.1 Noninverting Amplifier The OPA838 can be used as noninverting amplifier with signal input to the noninverting input (V_{IN+}). \boxtimes 8-1 illustrates a basic block diagram of the circuit. V_{REF} is often ground when split supplies are used. If $V_{IN} = V_{REF} + V_{SIG}$, and the gain setting resistor (R_G) is dc referenced to V_{REF} , use $\not\equiv$ 1 to calculate the output of the amplifier. $$V_{OUT} = V_{SIG} \left(1 + \frac{R_F}{R_G} \right) + V_{REF}$$ (1) $G = 1 + \frac{R_F}{R_G}$ The noninverting signal gain (also called the noise gain) of the circuit is set by: V_{REF} provides a reference around which the input and output signals swing. Output signals are in-phase with the input signals within the flat portion of the frequency response. For a high-speed, low-noise device like the OPA838, the values selected for R_F (and the R_G for the desired gain) can strongly influence the operation of the circuit. For the characteristic curves, the noninverting circuit of 29-1 shows the test configuration. 29-1 lists the recommended resistor values over gain. 図 9-1. Noninverting Characterization Circuit 29 $\overline{\mathcal{R}}$ 9-1 lists the recommended resistor values from target gains of 6 V/V to 20 V/V. This table controls the R_F and R_G values to set the resistor noise contribution at approximately 40% of the total output noise power. This increases the spot noise at the output over what the op amp voltage noise produces by 20%. Lower values reduce the output noise of any design at the cost of more power in the feedback circuit. Using the TINA model and simulation tool shows the impact of different resistor value choices on response shape and noise. 表 9-1. Noninverting Recommended Resistor Values | 20 1. Normitverting Recommended Resistor Values | | | | | | | | | |---|--------------------------|--------------------|-------------------|-----------|--|--|--|--| | TARGET
AVERAGE | $R_F\left(\Omega\right)$ | R _G (Ω) | ACTUAL GAIN (V/V) | GAIN (dB) | | | | | | 6 | 1000 | 200 | 6 | 15.56 | | | | | | 7 | 1180 | 196 | 7.02 | 16.93 | | | | | | 8 | 1370 | 196 | 7.99 | 18.05 | | | | | | 9 | 1540 | 191 | 9.06 | 19.15 | | | | | | 10 | 1690 | 187 | 10.04 | 20.03 | | | | | | 11 | 1870 | 187 | 11 | 20.83 | | | | | | 12 | 2050 | 187 | 11.96 | 21.56 | | | | | | 13 | 2210 | 182 | 13.14 | 22.37 | | | | | | 14 | 2370 | 182 | 14.02 | 22.94 | | | | | | 15 | 2550 | 182 | 15.01 | 23.53 | | | | | | 16 | 2740 | 182 | 16.05 | 24.11 | | | | | | 17 | 2870 | 178 | 17.12 | 24.67 | | | | | | 18 | 3090 | 182 | 17.98 | 25.09 | | | | | | 19 | 3240 | 178 | 19.20 | 25.67 | | | | | | 20 | 3400 | 178 | 20.1 | 26.06 | | | | | | 21 | 3570 | 178 | 21.06 | 26.47 | | | | | #### 9.1.2 Inverting Amplifier The OPA838 can be used as an inverting amplifier with signal input to the inverting input (V_{IN}-) through the gainsetting resistor (R_G.) × 8-2 illustrates a basic block diagram of the circuit. If $V_{IN} = V_{REF} + V_{SIG}$, and the noninverting input is dc biased to V_{REF} , the output of the amplifier is calculated according to 式 2: $$V_{OUT} = V_{SIG} \left(\frac{-R_F}{R_G} \right) + V_{REF}$$ (2) $$G = \frac{-R_F}{}$$ $G = \frac{-R_F}{R_G}$ and V_{REF} provides a reference point around which the input and output The signal gain of the circuit signals swing. For bipolar-supply operation, V_{REF} is often GND. The output signal is 180° out-of-phase with the input signal in the pass band of the application. \boxtimes 9-2 illustrates the 50- Ω input matched configuration used for the inverting characterization plots. In this case, an added termination resistor is placed in parallel with the input R_G resistor to provide an impedance match to 50- Ω test equipment. $\frac{1}{2}$ 9-2 lists the suggested values for R_F , R_G , and R_T for inverting gains from -6 V/V to -20 V/V. 図 9-2. Inverting With Input Impedance Matching 表 9-2. Inverting Recommended Resistor Values | AVERAGE | R _F (Ω) | R _G (Ω) | EXACT R _T | STANDARD R _T | INPUT Z _I | ACTUAL (V/V) | GAIN (dB) | |---------|--------------------|--------------------|----------------------|-------------------------|----------------------|--------------|-----------| | -6 | 1180 | 196 | 67.1 | 66.5 | 49.7 | -6.02 | 15.59 | | -7 | 1370 | 196 | 67.1 | 66.5 | 49.7 | -6.99 | 16.89 | | -8 | 1540 | 191 | 67.7 | 68.1 | 50.2 | -8.06 | 18.13 | | -9 | 1690 | 187 | 68.2 | 68.1 | 49.9 | -9.04 | 19.12 | | -10 | 1870 | 187 | 68.2 | 68.1 | 49.9 | -10 | 20 | | -11 | 2050 | 187 | 68.2 | 68.1 | 49.9 | -10.96 | 20.80 | | -12 | 2210 | 182 | 68.9 | 68.1 | 49.6 | -12.14 | 21.69 | | -13 | 2370 | 182 | 68.9 | 68.1 | 49.6 | -13.02 | 22.29 | | -14 | 2550 | 182 | 68.9 | 68.1 | 49.6 | -14.01 | 22.93 | | -15 | 2740 | 182 | 68.9 | 68.1 | 49.6 | -15.05 | 23.55 | | -16 | 2870 | 178 | 69.5 | 69.8 | 50.1 | -16.12 | 24.15 | | -17 | 3090 | 182 | 68.9 | 69.8 | 50.5 | -16.98 | 24.6 | | -18 | 3240 | 178 | 69.5 | 69.8 | 50.1 | -18.20 | 25.2 | | -19 |
3400 | 178 | 69.5 | 69.8 | 50.1 | -19.10 | 25.62 | Copyright © 2023 Texas Instruments Incorporated 資料に関するフィードバック(ご意見やお問い合わせ)を送信 31 表 9-2. Inverting Recommended Resistor Values (続き) | AVERAGE | R _F (Ω) | R _G (Ω) | EXACT R _T | STANDARD R _T | INPUT Z _I | ACTUAL (V/V) | GAIN (dB) | |---------|--------------------|--------------------|----------------------|-------------------------|----------------------|--------------|-----------| | -20 | 3570 | 178 | 69.5 | 69.8 | 50.1 | -20.06 | 26.04 | #### 9.1.3 Output DC Error Calculations The OPA838 can provide excellent DC signal accuracy due to high open-loop gain, high common-mode rejection, high power-supply rejection, and low input offset voltage and bias current offset errors. To take full advantage of this low input offset voltage, pay careful attention to input bias current cancellation. The low-noise input stage for the OPA838 has a relatively high input bias current (1.6 μ A typical out the pins) but with a close match between the two input currents. This is a negative rail input device using PNP input devices where the base current flows out of the device pins. A large resistor to ground on the V+ input shifts positively because of the input bias current. The mismatch between the two input bias currents is very low, typically only ± 20 nA of input offset current. Match the DC source impedances out of the two inputs to reduce the total output offset voltage. For example, one way to add bias current cancellation to the circuit in \boxtimes 8-8 is to insert a 165- Ω series resistor into the noninverting input to match the parallel combination of R_F and R_G for this basic gain of 6 V/V noninverting gain circuit. These same calculations apply to the output offset drift. Analyzing the simple circuit of \boxtimes 8-8, the noise gain for the input offset voltage drift is 1 + 1k / 200 = 6 V/V. This results in an output drift term of \pm 1.6 μ V/°C × 6 = \pm 9.6 μ V/°C. Because the two impedances out of the inputs are matched, the residual error due to the maximum \pm 500 pA/°C offset current drift is exactly that number times the 1-k Ω feedback resistor value, or \pm 50 μ V/°C. The total output DC error drift band is \pm 59 μ V/°C. #### 9.1.4 Output Noise Calculations The decompensated voltage feedback of the OPA838 op amp offers among the lowest input voltage and current noise terms for any device with a supply current less than 1 mA. \boxtimes 9-3 shows the op amp noise analysis model that includes all noise terms. In this model, all the noise terms are shown as noise voltage or current density terms in nV/\sqrt{Hz} or pA/\sqrt{Hz} . 図 9-3. Op-Amp Noise-Analysis Model The total output spot noise voltage is computed as the square root of the squared contributing terms to the output noise voltage. This computation is adding all the contributing noise powers at the output by superposition, then taking the square root to return to a spot noise voltage. ± 3 shows the general form for this output noise voltage using the terms presented in \boxtimes 9-3. $$E_{O} = \sqrt{\left[E_{NI}^{2} + \left(I_{BN}R_{S}\right) + 4kTR_{S}\right]NG^{2} + \left(I_{BI}R_{F}\right)^{2} + 4kTR_{F}NG}$$ (3) Dividing this expression by the noise gain (NG = 1 + R_F / R_G) gives the equivalent input-referred spot noise voltage at the noninverting input, as shown in ± 4 . $$E_{N} = \sqrt{E_{NI}^{2} + (I_{BN}R_{S})^{2} + 4kTR_{S} + (\frac{I_{BI}R_{F}}{NG})^{2} + \frac{4kTR_{F}}{NG}}$$ (4) Using the resistor values shown in $\@ifnextcolor{\otimes}\/ 9-1$ with $R_S=0$ Ω results in a constant input-referred voltage noise of 2.86 nV/ $\/ 4$ Hz. Reducing the resistor values brings this number closer to the intrinsic 1.9 nV/ $\/ 4$ Hz of the OPA838. Adding R_S for bias current cancellation in noninverting mode adds the noise from R_S to the total output noise; see $\@ifnextcolor{\otimes}\/ 3$. In inverting mode, bypass the R_S bias-current cancellation resistor with a capacitor for the best noise performance. #### 9.2 Typical Applications #### 9.2.1 High-Gain Differential I/O Designs A high-gain differential-to-differential I/O circuit can be used to drive a second-stage FDA or a differential-to-single-ended stage. This circuit is frequently used in applications where high input impedance is required (for example, if the source cannot be loaded). \boxtimes 9-3 illustrates an example design where the differential gain is 41 V/V. An added element between the two R_G resistors increases the noise gain for the common-mode feedback. Make sure to provision for the added element; otherwise, a decompensated VFA (such as the OPA838) often oscillates. With only the R_G elements in the differential I/O design, the common-mode feedback is unity-gain and often causes high-frequency, common-mode oscillations. To resolve this issue, split the R_G elements in half and add a low-impedance path, such as a capacitor or a DC reference, between the two R_G values. 図 9-4. High-Gain Differential I/O Stage Integrated results are available, but the OPA838 provides a low-power, high-frequency result. For best CMRR performance, match the resistors. A good rule is CMRR is approximately equal to the resistor tolerance; therefore, a 0.1% tolerance provides approximately 60-dB CMRR. #### 9.2.1.1 Design Requirements As an example design, start with the circuit in 29-4. - Set the target gain and split the R_G element in half. For this example, target a gain of 41 V/V. - Assess the DC common-mode biasing on the noninverting inputs. The DC biasing must be in range and have a gain of 1 to the output. This is not illustrated in ⊠ 9-3. Product Folder Links: OPA838 Copyright © 2023 Texas Instruments Incorporated 資料に関するフィードバック(ご意見やお問い合わせ) を送信 33 ### **OPA838** JAJSDO2C - AUGUST 2017 - REVISED OCTOBER 2023 • If a DC reference is used as the mid-R $_{\rm G}$ bias, setting the reference equal to the noninverting input bias voltage sets the output common-mode to that voltage. Using a capacitor as illustrated in \boxtimes 9-3 accomplishes the same results. #### 9.2.1.2 Detailed Design Procedure - Set the total R $_{\rm G}$ value near the high gain values using ${\it \pm 9-1}$. This 178- Ω total must be split for a center tap to increase the common-mode noise gain, as shown by the 88.7- Ω value in ${\it \boxtimes 9-4}$. - Set R_F using a standard value near the calculated from solving 式 1 using half of the total R_G value. - Simulate the common-mode noise with different elements on the R_G center tap as shown in \boxtimes 9-5. Decide which is most appropriate to the application. The common-mode loop instability without the R_G center tap is not often apparent in the closed-loop differential simulations. The common-mode loop instability without the R_G center tap can often be detected in a common-mode output-noise simulation as \boxtimes 9-5 shows. Grounding the inputs \boxtimes 9-4 and running an output-noise simulation for the common-mode tap point in \boxtimes 9-3 shows a peaking in the noise at high frequency. This peaking indicates low-phase margin for the common-mode loop. \boxtimes 9-5 shows this peaking in the lowest noise curve, with two options for improving phase margin. The first option used in \boxtimes 9-4 is a capacitor to ground set to increase the common-mode noise gain only at higher frequencies. This increase can be seen by the peaking in the common-mode noise of \boxtimes 9-5. Another alternative is to provide a dc voltage reference on the R_G center tap. This method raises the common-mode noise gain from dc and beyond. Neither of these latter two options show any evidence of low phase-margin peaking. These two options do increase the output common-mode noise significantly at lower frequencies. Typically, an increase in output common-mode noise is more acceptable than low-phase margin because the next stage (FDA, ADC, differential to single stage) rejects common-mode noise. Using the 10-nF center tap capacitor, \boxtimes 9-6 shows the differential I/O small-signal response showing the expected 300 MHz / 41 \approx 7.3 MHz closed-loop bandwidth. The capacitor to ground between the R_G elements does not impact the differential frequency response. #### 9.2.1.3 Application Curves 図 9-5. Common-Mode Output Noise for Differential I/O Design 図 9-6. Differential Small-Signal Frequency Response #### 9.2.2 Transimpedance Amplifier A common application for a high-gain-bandwidth voltage-feedback op amp is to amplify a small photodiode current from a capacitive detector. \boxtimes 9-7 shows the front-page transimpedance circuit with more detail. Here, a fixed -0.23 negative voltage generator (LM7705) is used on the negative supply to make sure the output has adequate headroom when the output is at 0 V. The transimpedance stage is designed here for a 2.4-MHz flat (Butterworth) response while a simple RC post-filter band-limits the broadband noise and sets the overall bandwidth to 1 MHz. The requirements for a high-dynamic-range transimpedance (or charge) amplifier include the very low input voltage noise intrinsic to a decompensated device like the OPA838. The noise gain over frequency for this type of circuit starts out at unity gain, and then begins to peak with a single zero response. This peaking is due to the pole formed in the feedback by the feedback resistor and the total capacitance on the inverting input. That noise gain response is flattened out at higher frequencies by the feedback capacitor value to be the 1 + C_S / C_F capacitor ratio. This noise gain is normally a very high, allowing the decompensated OPA838 to be applied to this application. The noise gain is intentionally peaked to a high value in this application; therefore, the very low input voltage noise (1.8 nV/ \sqrt{Hz}) of the OPA838 improves dynamic range. 図 9-7. 100-kΩ Wide Bandwidth Transimpedance Design #### 9.2.2.1 Design
Requirements To implement a controlled frequency response transimpedance design, set the transimpedance stage amplifier bandwidth higher than a controlled post RC filter. This allows variation in the source capacitance and amplifier gain bandwidth product with less overall bandwidth variation to the final output. In this example design: - Assume a nominal source capacitance value of 100 pF. This normally comes from the capacitance versus reverse bias plot for the photodiode. No reverse bias is illustrated in № 9-8, but the current source is typically a back biased diode with a negative supply on the anode and the cathode connected to the op amp inverting input. In this polarity, the signal current sinks into the diode and raises the op amp output voltage above ground. - For the best dc precision, add a matching resistor on the noninverting input to reduce the input bias current error to I_{OS} × R_F. This resistor adds to the input voltage noise; TI recommends bypassing that resistor with as large as a capacitor as required to roll off resistor noise. This capacitor has a relatively low frequency self resonance that interacts with the input stage and can impair stability. Add a small series 20-Ω resistor from the capacitor into the noninverting input to de-Q the resonant source impedance without adding too much noise. - Set the feedback capacitor to achieve the desired frequency response shape. - Add a post RC filter to control the overall bandwidth to 1 MHz. In this example, a 2.2-nF capacitor allows a low 73.2-Ω series resistor. When driving a sampling ADC (like a SAR), this combination helps reduce the sampling glitch and speed settling time. Copyright © 2023 Texas Instruments Incorporated #### 9.2.2.2 Detailed Design Procedure The primary design requirement is to set the achievable transimpedance gain and compensate the operational amplifier with C_F for the desired response shape. A detailed transimpedance design methodology is available in *Transimpedance Considerations for High-Speed Amplifiers*. With a source capacitance set and the amplifier selected to provide a particular gain bandwidth product, the achievable transimpedance gain and resulting Butterworth bandwidth are tightly coupled as ± 5 illustrates. Use ± 6 to solve for a maximum R_F value. When the R_F is selected, the feedback pole is set by ± 7 to be at 0.707 of the characteristic frequency. At that compensation point, the closed-loop bandwidth is that characteristic frequency with a Butterworth response. - With the 100-pF source capacitance, 300-MHz gain bandwidth product, and the 2.2-MHz closed-loop bandwidth target in the transimpedance stage, solve 式 6 for a maximum gain of 100 kΩ. - Set the feedback pole at 0.707 times that 2.2-MHz Butterworth bandwidth. This sets the target 1 / $(2\pi \times R_F \times C_F)$ = 1.55 MHz. Solving for C_F sets the target to 1 pF - If dc precision is desired, add a 100-kΩ resistor to ground on the noninverting input. If DC precision is not required, ground the noninverting input - Add a resistor noise filtering capacitor in parallel with the 100-kΩ resistor. - · Add a small series resistor isolating this capacitor from the noninverting input. - Select a final filter capacitor for the load. (In this example, a value of 2.2 nF is used as a typical SAR input capacitor.) - Add a series resistor to the final filter capacitor to form a 1-MHz pole. In this example, that is 73.2 Ω. - Confirm this resistor is greater than the minimum recommended value illustrated in Z 7-49. $$F_{-3dB} \approx \sqrt{\frac{GBP}{2\pi R_f C_S}}$$ (5) $$R_{f \max} \approx \frac{GBP}{F_{-3dB}^2 2\pi C_S}$$ (6) $$\frac{1}{2\pi R_f C_f} = 0.707 \times \sqrt{\frac{GBP}{2\pi R_f C_S}} \tag{7}$$ Implementing this design and simulating the performance using the TINA model for the response to the output pin and to the final capacitive load shows the expected results of \boxtimes 9-8. Here, the exact 2.2-MHz flat Butterworth response to the output pin is shown with the final single pole rolloff at 1 MHz at the final 2.2-nF capacitor. #### 9.2.2.3 Application Curve 図 9-8. Small-Signal Response for 100-kΩ Transimpedance Gain Copyright © 2023 Texas Instruments Incorporated 資料に関するフィードバック(ご意見やお問い合わせ)を送信 37 ## 9.3 Power Supply Recommendations The OPA838 device is intended to work in a supply range of 2.7 V to 5.4 V. Good power-supply bypassing is required. Minimize the distance (less than 0.1 inch) from the power-supply pins to high-frequency, 0.1-µF decoupling capacitors. A larger capacitor (2.2 µF is typical) is used with a high-frequency, 0.1-µF supply-decoupling capacitor at the device supply pins. For single-supply operation, only the positive supply has these capacitors. When a split-supply is used, use these capacitors for each supply to ground. If necessary, place the larger capacitors further from the device and share these capacitors among several devices in the same area of the PCB. Avoid narrow power and ground traces to minimize inductance between the pins and the decoupling capacitors. An optional 0.1-µF supply decoupling capacitor across the two power supplies (for bipolar operation) reduces second harmonic distortion. The OPA838 has a positive supply current temperature coefficient; see \boxtimes 7-57. This helps improve the input offset voltage drift. Supply current requirements in system design must account for this effect using the maximum intended ambient and \boxtimes 7-57 to size the supply required. The very low power dissipation for the OPA838 typically does not require any special thermal design considerations. For the extreme case of 125°C operating ambient, use the approximate maximum 200°C/W for the three packages, and a maximum internal power of 5.4-V supply × 1.25-mA 125°C supply current from \boxtimes 7-57 gives a maximum internal power of 6.75 mW. This only gives a 1.35°C rise from ambient to junction temperature which is well below the maximum 150°C junction temperature. Load power adds to this, but also increases the junction temperature only slightly over ambient temperature. ## 9.4 Layout ## 9.4.1 Layout Guidelines The *OPA838 EVM* can be used as a reference when designing the circuit board. TI recommends following the EVM layout of the external components near to the amplifier, ground plane construction, and power routing as closely as possible. General guidelines are listed below: - 1. Signal routing must be direct and as short as possible into and out of the op amp. - 2. The feedback path must be short and direct avoiding vias if possible. - 3. Ground or power planes must be removed from directly under the negative input and output pins of the amplifier. - 4. TI recommends placing a series output resistor as close to the output pin as possible when driving capacitive or matched loads. - 5. A 2.2-µF power-supply decoupling capacitor must be placed within two inches of the device and can be shared with other op amps. For split-supply operation, a capacitor is required for both supplies. - 6. A 0.1-µF power-supply decoupling capacitor must be placed as close to the supply pins as possible, preferably within 0.1 inch. For split-supply operation, a capacitor is required for both supplies. - 7. The PD pin uses logic levels referenced off the negative supply. If the pin is not used, the pin must tie to the positive supply to enable the amplifier. If the pin is used, the pin must be actively driven. A bypass capacitor is not necessary, but is used for EMI rejection in noisy environments. ## 9.4.2 Layout Example 図 9-9. EVM Layout Example ## 10 Device and Documentation Support ## 10.1 Device Support #### 10.1.1 TINA-TI[™] Simulation Model Features The TINA-TI™ simulation software device model is available on the product folder www.ti.com in a typical application circuit file. The model includes numerous features intended to speed designer progress over a wide range of application requirements. The following list shows the performance parameters included in the model: - For the small-signal response shape with any external circuit: - Differential open-loop gain and phase - Parasitic input capacitance - Open-loop differential output impedance - For noise simulations: - Input differential spot voltage noise and a 100-Hz 1/f corner - Input current noise on each input with a 6-kHz 1/f corner - For time-domain, step-response simulations: - Differential slew rate - I/O headroom models to predict clipping - Input stage diodes to predict overdrive limiting - Fine-scale, dc precision terms: - PSRR - CMRR - Nominal input offset voltage - Nominal input offset current - Nominal input bias current The *Typical Characteristics* table provides more detail than the macromodels can provide. Some of the unmodeled features include: - Harmonic distortion - Temperature drift in dc error (V_{IO} and I_{OS}) - · Overdrive recovery time - · Turn-on and turn-off times using the power-down feature #### **10.2 Documentation Support** ## 10.2.1 Related Documentation For related documentation see the following: Texas Instruments, OPA835DBV, OPA836DBV EVM user's guide ## 10.3 ドキュメントの更新通知を受け取る方法 ドキュメントの更新についての通知を受け取るには、ti.com のデバイス製品フォルダを開いてください。「更新の通知を受け取る」をクリックして登録すると、変更されたすべての製品情報に関するダイジェストを毎週受け取れます。変更の詳細については、修正されたドキュメントに含まれている改訂履歴をご覧ください。 #### 10.4 サポート・リソース テキサス・インスツルメンツ E2E™ サポート・フォーラムは、エンジニアが検証済みの回答と設計に関するヒントをエキスパートから迅速かつ直接得ることができる場所です。既存の回答を検索したり、独自の質問をしたりすることで、設計で必要な支援を迅速に得ることができます。 リンクされているコンテンツは、各寄稿者により「現状のまま」提供されるものです。これらはテキサス・インスツルメンツの仕様を構成するものではなく、必ずしもテキサス・インスツルメンツの見解を反映したものではありません。テキサス・インスツルメンツの使用条件を参照してください。 *資料に関するフィードバック (ご意見やお問い合わせ) を送信* Copyright © 2023 Texas Instruments Incorporated #### 10.5 Trademarks TINA-TI™ and テキサス・インスツルメンツ E2E™ are trademarks of Texas Instruments. すべての商標は、それぞれの所有者に帰属します。 ## 10.6 静電気放電に関する注意事項 この IC は、ESD によって破損する可能性があります。テキサス・インスツルメンツは、IC を取り扱う際には常に適切な注意を払うことを推奨します。正しい取り扱いおよび設置手順に従わない場合、デバイスを破損するおそれがあります。 ESD による破損は、わずかな性能低下からデバイスの完全な故障まで多岐にわたります。精密な IC
の場合、パラメータがわずかに変化するだけで公表されている仕様から外れる可能性があるため、破損が発生しやすくなっています。 ## 10.7 用語集 テキサス・インスツルメンツ用語集 この用語集には、用語や略語の一覧および定義が記載されています。 ## Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. 資料に関するフィードバック(ご意見やお問い合わせ)を送信 41 www.ti.com 17-Oct-2023 #### PACKAGING INFORMATION | Orderable Device | Status (1) | Package Type | Package
Drawing | Pins | Package
Qty | Eco Plan | Lead finish/
Ball material | MSL Peak Temp | Op Temp (°C) | Device Marking (4/5) | Samples | |------------------|------------|--------------|--------------------|------|----------------|--------------|-------------------------------|---------------------|--------------|----------------------|---------| | OPA838IDBVR | ACTIVE | SOT-23 | DBV | 6 | 3000 | RoHS & Green | NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | 1C3F | Samples | | OPA838IDBVT | ACTIVE | SOT-23 | DBV | 6 | 250 | RoHS & Green | NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | 1C3F | Samples | | OPA838IDCKR | ACTIVE | SC70 | DCK | 5 | 3000 | RoHS & Green | NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | 17Q | Samples | | OPA838IDCKT | ACTIVE | SC70 | DCK | 5 | 250 | RoHS & Green | NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | 17Q | Samples | | OPA838SIDCKR | ACTIVE | SC70 | DCK | 6 | 3000 | RoHS & Green | NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | 19C | Samples | | OPA838SIDCKT | ACTIVE | SC70 | DCK | 6 | 250 | RoHS & Green | NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | 19C | Samples | (1) The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. **Green:** TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. - (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. - (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. - (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. - (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width. ## PACKAGE OPTION ADDENDUM www.ti.com 17-Oct-2023 Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. **PACKAGE MATERIALS INFORMATION** www.ti.com 27-Jan-2024 ## TAPE AND REEL INFORMATION | A0 | Dimension designed to accommodate the component width | |----|---| | В0 | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | ## QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE #### *All dimensions are nominal | Device | Package
Type | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |--------------|-----------------|--------------------|---|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | OPA838IDBVR | SOT-23 | DBV | 6 | 3000 | 178.0 | 9.0 | 3.23 | 3.17 | 1.37 | 4.0 | 8.0 | Q3 | | OPA838IDBVT | SOT-23 | DBV | 6 | 250 | 178.0 | 9.0 | 3.23 | 3.17 | 1.37 | 4.0 | 8.0 | Q3 | | OPA838IDCKR | SC70 | DCK | 5 | 3000 | 178.0 | 9.0 | 2.4 | 2.5 | 1.2 | 4.0 | 8.0 | Q3 | | OPA838IDCKT | SC70 | DCK | 5 | 250 | 178.0 | 9.0 | 2.4 | 2.5 | 1.2 | 4.0 | 8.0 | Q3 | | OPA838SIDCKR | SC70 | DCK | 6 | 3000 | 178.0 | 9.0 | 2.4 | 2.5 | 1.2 | 4.0 | 8.0 | Q3 | | OPA838SIDCKT | SC70 | DCK | 6 | 250 | 178.0 | 9.0 | 2.4 | 2.5 | 1.2 | 4.0 | 8.0 | Q3 | www.ti.com 27-Jan-2024 ## *All dimensions are nominal | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | |--------------|--------------|-----------------|------|------|-------------|------------|-------------| | OPA838IDBVR | SOT-23 | DBV | 6 | 3000 | 180.0 | 180.0 | 18.0 | | OPA838IDBVT | SOT-23 | DBV | 6 | 250 | 180.0 | 180.0 | 18.0 | | OPA838IDCKR | SC70 | DCK | 5 | 3000 | 180.0 | 180.0 | 18.0 | | OPA838IDCKT | SC70 | DCK | 5 | 250 | 180.0 | 180.0 | 18.0 | | OPA838SIDCKR | SC70 | DCK | 6 | 3000 | 180.0 | 180.0 | 18.0 | | OPA838SIDCKT | SC70 | DCK | 6 | 250 | 180.0 | 180.0 | 18.0 | ## NOTES: - 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.25 per side. - 4. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation. - 5. Refernce JEDEC MO-178. NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. NOTES: (continued) - 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. - 9. Board assembly site may have different recommendations for stencil design. # DCK (R-PDSO-G6) ## PLASTIC SMALL-OUTLINE PACKAGE NOTES: A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side. - D. Falls within JEDEC MO-203 variation AB. # DCK (R-PDSO-G6) ## PLASTIC SMALL OUTLINE NOTES: - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad. - D. Publication IPC-7351 is recommended for alternate designs. - E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations. ## NOTES: - 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. Reference JEDEC MO-203. - 4. Support pin may differ or may not be present.5. Lead width does not comply with JEDEC. NOTES: (continued) 6. Publication IPC-7351 may have alternate designs.7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. NOTES: (continued) - 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. - 9. Board assembly site may have different recommendations for stencil design. ## 重要なお知らせと免責事項 TI は、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス・デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。 これらのリソースは、TI 製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した TI 製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、その他のあら
ゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。 上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている TI 製品を使用するアプリケーションの開発の目的でのみ、TI はその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。TI や第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、TI およびその代理人を完全に補償するものとし、TI は一切の責任を拒否します。 TIの製品は、TIの販売条件、または ti.com やかかる TI 製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。TI がこれらのリソースを提供することは、適用される TI の保証または他の保証の放棄の拡大や変更を意味するものではありません。 お客様がいかなる追加条項または代替条項を提案した場合でも、TIはそれらに異議を唱え、拒否します。 郵送先住所: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated