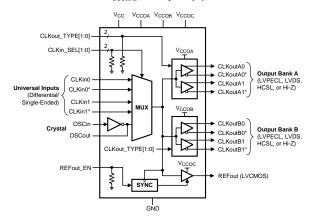


LMK00304

JAJSFY7G - FEBRUARY 2012 - REVISED AUGUST 2018

LMK00304 3GHz、4出力、超低付加ジッタの 差動クロック・バッファ/レベル・トランスレータ

1 特長


3:1入力マルチプレクサ

- 2つの汎用入力は最高3.1GHzで動作し、 LVPECL、LVDS、CML、SSTL、HSTL、HCSL、 シングルエンド・クロックに対応
- 1つの水晶振動子入力で、10MHz~40MHzの水晶振動子またはシングルエンド・クロックに対応
- 2バンクで、それぞれに2つの差動出力
 - LVPECL、LVDS、HCSL、Hi-Z (選択可能)
 - LMK03806のクロック・ソースが156.25MHzのときのLVPECL付加ジッタ
 - 20fs RMS(10kHz~1MHz)
 - 51fs RMS(12kHz~20MHz)
- 高PSRR: 156.25MHz時に-65/-76dBc (LVPECL/LVDS)
- 同期イネーブル入力付きのLVCMOS出力
- 構成をピンで制御可能
- V_{CC}コア電源: 3.3V ±5%
- 3つの独立したV_{CCO}出力電源: 3.3V/2.5V ±5%
- 工業用温度範囲: -40℃~+85℃
- 32リードのWQFN (5mm×5mm)

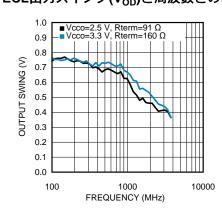
2 アプリケーション

- ADC、DAC、マルチ・ギガビット・イーサネット、XAUI、Fibre Channel、SATA/SAS、SONET/SDH、CPRI、高周波数バックプレーン用のクロック分配およびレベル変換
- スイッチ、ルータ、ライン・カード、タイミング・カード
- サーバー、コンピュータ、PCI Express (PCle 3.0)
- リモート無線ユニットおよびベースバンド・ユニット

機能ブロック図

3 概要

LMK00304デバイスは3GHz、4出力の差動ファンアウト・バッファで、高周波数、低ジッタのクロック/データ分配およびレベル変換を目的としています。入力クロックは2つの汎用入力、または1つの水晶振動子入力から選択できます。選択された入力クロックは2つのバンクに分配され、それぞれのバンクには2つの差動出力と1つのLVCMOS出力があります。差動出力バンクは、LVPECL、LVDS、HCSLドライバとして相互に構成するか、無効にできます。LVCMOS出力には同期イネーブル入力があり、イネーブルまたはディセーブル時にラント(微小)パルスなしの動作を実現できます。LMK00304は3.3Vのコア電源、および3つの独立した3.3V/2.5Vの出力電源で動作します。


LMK00304は高性能、多用途、高い電力効率から、固定 出力のバッファ・デバイスの代替品として理想的で、システムのタイミング・マージンを拡大できます。

製品情報⁽¹⁾

	- COLO 113 1 M	
型番	パッケージ	本体サイズ(公称)
LMK00304	WQFN (32)	5.00mm×5.00mm

(1) 利用可能なすべてのパッケージについては、このデータシートの末 尾にある注文情報を参照してください。

LVPECL出力スイング(VoD)と周波数との関係

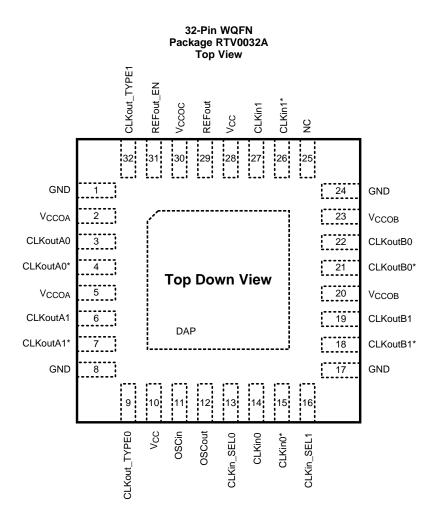
	•/г
Ħ	八

1	特長1	9	Application and Implementation	22
2	アプリケーション1		9.1 Driving the Clock Inputs	22
3	概要1		9.2 Crystal Interface	23
4	改訂履歴 2		9.3 Termination and Use of Clock Drivers	24
5	Pin Configuration and Functions 4	10	Power Supply Recommendations	29
6	Specifications6		10.1 Power Supply Sequencing	29
·	6.1 Absolute Maximum Ratings 6		10.2 Current Consumption and Power Dissipation Calculations	29
	6.2 ESD Ratings		10.3 Power Supply Bypassing	30
	6.3 Recommended Operating Conditions		10.4 Thermal Management	31
	6.4 Thermal Information	11	デバイスおよびドキュメントのサポート	33
	6.5 Electrical Characteristics		11.1 ドキュメントのサポート	33
_	6.6 Typical Characteristics		11.2 ドキュメントの更新通知を受け取る方法	33
7	Parameter Measurement Information 18		11.3 コミュニティ・リソース	33
	7.1 Differential Voltage Measurement Terminology 18		11.4 商標	
8	Detailed Description 19		11.5 静電気放電に関する注意事項	33
	8.1 Overview		11.6 Glossary	
	8.2 Functional Block Diagram	12	メカニカル、パッケージ、および注文情報	

4 改訂履歴

資料番号末尾の英字は改訂を表しています。その改訂履歴は英語版に準じています。

Rev	vision F (March 2016) から Revision G に変更	Page
•	Added new rows to the <i>Thermal Information</i> table	6
<u>. </u>	Added the Support for PCB Temperature up to 105°C section	32
Rev	vision E (May 2013) から Revision F に変更	Page
•	ドキュメントのタイトルに「超低付加ジッタ」を	1
	次のセクションを追加、更新、または名前変更:「仕様」、「詳細説明」、「アプリケーションと実装」、「電源に関する推奨事項」、「デバイスおよびドキュメントのサポート」、「メカニカル、パッケージ、および注文情報」	1
•	Changed Cin (typ) from 1 pF to 4 pF (based on updated test method) in <i>Electrical Characteristics: Crystal Interface</i>	8
•	Added footnote for V _{LSE} parameter in the <i>Electrical Characteristics</i> table.	8
	Added "Additive RMS Jitter, Integration Bandwidth 10 kHz to 20 MHz" parameter with 100 MHz and 156.25 MHz Test conditions, Typical values, Max values, and footnotes in Electrical Characteristics: LVPECL Outputs	9
	Added "Additive RMS Jitter, Integration Bandwidth 10 kHz to 20 MHz" parameter with 100 MHz and 156.25 MHz Test conditions, Typical values, Max values, and footnotes in Electrical Characteristics: LVDS Outputs	10
•	Added new paragraph at end of Driving the Clock Inputs	22
•	Changed "LMK00301" to "LMK00304" in Figure 27 and Figure 28	23
•	Changed Cin = 4 pF (typ, based on updated test method) in Crystal Interface	23
•	Added POWER SUPPLY SEQUENCING	29



 correspond with information in Electrical Characteristics Table. Changed bypass cap text to signal attenuation text of the fourth paragraph in <i>Driving the Clock Inputs</i> section. Changed Single-Ended LVCMOS Input, DC Coupling with Common Mode Biasing image with revised graphic. Added text to second paragraph of Termination for AC Coupled Differential Operation to explain graphic update to Differential LVDS Operation with AC Coupling to Receivers. Changed graphic for Differential LVDS Operation, AC Coupling, No Biasing by the Receiver and updated caption. 			
 Changed Single-Ended LVCMOS Input, DC Coupling with Common Mode Biasing image with revised graphic. Added text to second paragraph of Termination for AC Coupled Differential Operation to explain graphic update to Differential LVDS Operation with AC Coupling to Receivers. 		correspond with information in Electrical Characteristics Table.	22
 Added text to second paragraph of Termination for AC Coupled Differential Operation to explain graphic update to Differential LVDS Operation with AC Coupling to Receivers. 	•	Changed bypass cap text to signal attenuation text of the fourth paragraph in Driving the Clock Inputs section	. 22
Differential LVDS Operation with AC Coupling to Receivers.	•	Changed Single-Ended LVCMOS Input, DC Coupling with Common Mode Biasing image with revised graphic	. 23
• Changed graphic for Differential LVDS Operation, AC Coupling, No Biasing by the Receiver and updated caption	•		26
	•	Changed graphic for Differential LVDS Operation, AC Coupling, No Biasing by the Receiver and updated caption	. 26

5 Pin Configuration and Functions

Pin Functions⁽¹⁾

	PIN				
NO.	NAME	TYPE	DESCRIPTION		
DAP	DAP	GND	Die Attach Pad. Connect to the PCB ground plane for heat dissipation.		
1, 8 17, 24	GND	GND	Ground		
2, 5	V _{CCOA}	PWR	Power supply for Bank A Output buffers. V_{CCOA} operates from 3.3 V or 2.5 V. The V_{CCOA} pins are internally tied together. Bypass with a 0.1 uF low-ESR capacitor placed very close to each Vcco pin. $^{(2)}$		
3, 4	CLKoutA0, CLKoutA0*	0	Differential clock output A0. Output type set by CLKout_TYPE pins.		
6, 7	CLKoutA1, CLKoutA1*	0	Differential clock output A1. Output type set by CLKout_TYPE pins.		
9, 32	CLKout_TYPE0, CLKout_TYPE1	I	Bank A and Bank B output buffer type selection pins (3)		
10, 28	Vcc	PWR	each Vcc pin.		
11	OSCin	Input for crystal. Can also be driven by a XO, TCXO, or other external single-ended clock.			
12	OSCout	0	O Output for crystal. Leave OSCout floating if OSCin is driven by a single ended clock.		
13, 16	CLKin_SEL0, CLKin_SEL1	I	Clock input selection pins (3)		
14, 15	CLKin0, CLKin0*	I	Universal clock input 0 (differential/single-ended)		
18, 19	CLKoutB1*, CLKoutB1	0	Differential clock output B1. Output type set by CLKout_TYPE pins.		
20, 23	V _{ССОВ}	PWR	Power supply for Bank B Output buffers. V_{CCOB} operates from 3.3 V or 2.5 V. The V_{CCOB} pins are internally tied together. Bypass with a 0.1 uF low-ESR capacitor placed very close to each Vcco pin. See <i>Absolute Maximum Ratings</i>		
21, 22	CLKoutB0*, CLKoutB0	0	Differential clock output B0. Output type set by CLKout_TYPE pins.		
25	NC	_	Not connected internally. Pin may be floated, grounded, or otherwise tied to any potential within the Supply Voltage range stated in the <i>Absolute Maximum Ratings</i> .		
26, 27	CLKin1*, CLKin1	I	Universal clock input 1 (differential/single-ended)		
29	REFout	0	LVCMOS reference output. Enable output by pulling REFout_EN pin high.		
30	Vccoc	PWR	Power supply for REFout buffer. V _{CCOC} operates from 3.3 V or 2.5 V.		
31	REFout_EN	1	REFout enable input. Enable signal is internally synchronized to selected clock input. (3)		

⁽¹⁾ Any unused output pins should be left floating with minimum copper length (see note in *Clock Outputs*), or properly terminated if connected to a transmission line, or disabled/Hi-Z if possible. See *Clock Outputs* for output configuration and *Termination and Use of Clock Drivers* for output interface and termination techniques.

⁽²⁾ The output supply voltages or pins (V_{CCOA}, V_{CCOB}, and V_{CCOC}) will be called V_{CCO} in general when no distinction is needed, or when the output supply can be inferred from the output bank/type.

⁽³⁾ CMOS control input with internal pull-down resistor.

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)

		MIN	MAX	UNIT
V_{CC} , V_{CCO}	Supply Voltages	-0.3	3.6	V
V_{IN}	Input Voltage	-0.3	$(V_{CC} + 0.3)$	V
T _{STG}	Storage Temperature Range	-65	+150	°C
T _L	Lead Temperature (solder 4 s)		+260	°C
TJ	Junction Temperature		+150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	±2000	
V _(ESD)	Electrostatic discharge	Machine model (MM)	±150	V
(ESD)	Liourostatio diconargo	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±750	•

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 500-V HBM is possible with the necessary precautions. Pins listed as ±2000 V may actually have higher performance.

6.3 Recommended Operating Conditions

		MIN	TYP	MAX	UNIT
T _A	Ambient Temperature Range	-40	25	85	ů
T_{J}	Junction Temperature			125	ů
V _{CC}	Core Supply Voltage Range	3.15	3.3	3.45	٧
V _{cco}	Output Supply Voltage Range (1)(2)	3.3 – 5% 2.5 – 5%	3.3 2.5	3.3 + 5% 2.5 + 5%	V

⁽¹⁾ The output supply voltages or pins (V_{CCOA}, V_{CCOB}, and V_{CCOC}) will be called V_{CCO} in general when no distinction is needed, or when the output supply can be inferred from the output bank/type.

6.4 Thermal Information

		LMK00304	
	THERMAL METRIC ⁽¹⁾	RTV0032A (WQFN)	UNIT
		32 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	38.1	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	7.2	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	12	°C/W
ΨЈТ	Junction-to-top characterization parameter	0.4	°C/W
ΨЈВ	Junction-to-board characterization parameter	11.9	°C/W
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	4.5	°C/W

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 250-V CDM is possible with the necessary precautions. Pins listed as ±750 V may actually have higher performance.

⁽²⁾ Vcco for any output bank should be less than or equal to Vcc (Vcco ≤ Vcc).

6.5 Electrical Characteristics

		TEST CO	NDITIONS	MIN	TYP	MAX	UNIT
CURRENT CO	ONSUMPTION(3)						
	Core Supply Current, All	CLKinX selected			8.5	10.5	mA
ICC_CORE	Outputs Disabled	OSCin selected			10	13.5	mA
I _{CC_PECL}	Additive Core Supply Current, LVPECL Banks Enabled				38	48	mA
I _{CC_LVDS}	Additive Core Supply Current, LVDS Banks Enabled				43	52	mA
I _{CC_HCSL}	Additive Core Supply Current, HCSL Banks Enabled				50	58.5	mA
I _{CC_CMOS}	Additive Core Supply Current, LVCMOS Output Enabled				3.5	5.5	mA
I _{CCO_PECL}	Additive Output Supply Current, LVPECL Banks Enabled	Includes Output Bank Bias and Load Currents for both banks, R_T = 50 Ω to Vcco – 2 V on all outputs			135	163	mA
I _{CCO_LVDS}	Additive Output Supply Current, LVDS Banks Enabled				25	34.5	mA
I _{CCO_HCSL}	Additive Output Supply Current, HCSL Banks Enabled	Includes Output Bank Bia both banks, $R_T = 50 \Omega$ or			65	81.5	mA
	Additive Output Supply		Vcco = 3.3 V ± 5%		9	10	mA
I _{CCO_CMOS}	Current, LVCMOS Output Enabled	200 MHz, $C_L = 5 pF$	Vcco = 2.5 V ± 5%		7	8	mA
POWER SUP	PLY RIPPLE REJECTION (I	PSRR)				'	
	Ripple-Induced		156.25 MHz	-	-65		
PSRR _{PECL}	Phase Spur Level Differential LVPECL Output ⁽⁴⁾		312.5 MHz		-63		dBc
	Ripple-Induced Phase	100 kHz, 100 mVpp Ripple Injected on Vcco,	156.25 MHz		-76		
PSRR _{LVDS}	Spur Level Differential LVDS Output (4)	Vcco = 2.5 V	312.5 MHz		-74		dBc
	Ripple-Induced Phase		156.25 MHz		-72		
PSRR _{HCSL}	Spur Level Differential HCSL Output (4)		312.5 MHz		-63		dBc
CMOS CONT	ROL INPUTS (CLKin_SELn	, CLKout_TYPEn, REFou	t_EN)				
V _{IH}	High-Level Input Voltage			1.6		Vcc	V
V _{IL}	Low-Level Input Voltage			GND		0.4	V
I _{IH}	High-Level Input Current	V _{IH} = Vcc, Internal pulldo	wn resistor			50	μΑ
I _{IL}	Low-Level Input Current	V _{IL} = 0 V, Internal pulldov	vn resistor	-5	0.1		μA

⁽¹⁾ The output supply voltages or pins (V_{CCOA} , V_{CCOB} , and V_{CCOC}) will be called V_{CCO} in general when no distinction is needed, or when the output supply can be inferred from the output bank/type.

⁽²⁾ The Electrical Characteristics tables list ensured specifications under the listed Recommended Operating Conditions except as otherwise modified or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and are not ensured.

⁽³⁾ See Power Supply Recommendations for more information on current consumption and power dissipation calculations.

⁽⁴⁾ Power supply ripple rejection, or PSRR, is defined as the single-sideband phase spur level (in dBc) modulated onto the clock output when a single-tone sinusoidal signal (ripple) is injected onto the Vcco supply. Assuming no amplitude modulation effects and small index modulation, the peak-to-peak deterministic jitter (DJ) can be calculated using the measured single-sideband phase spur level (PSRR) as follows: DJ (ps pk-pk) = [(2 × 10^(PSRR / 20)) / (π × f_{CLK})] × 1E12

		TEST	CONDITIONS	MIN	TYP MAX	UNIT
CLOCK INP	UTS (CLKin0/CLKin0*, CLKi	n1/CLKin1*)			1	
f _{CLKin}	Input Frequency Range ⁽⁵⁾	Functional up to 3.1 G Output frequency rang output type (refer to LV LVCMOS output speci	e and timing specified per //PECL, LVDS, HCSL,	DC	3.1	GHz
V_{IHD}	Differential Input High Voltage				Vcc	V
V_{ILD}	Differential Input Low Voltage	CLKin driven differenti	ally	GND		V
V _{ID}	Differential Input Voltage Swing ⁽⁶⁾			0.15	1.3	V
		V _{ID} = 150 mV		0.25	Vcc - 1.2	
V_{CMD}	Differential Input Common Mode Voltage	V _{ID} = 350 mV		0.25	Vcc - 1.1	V
	Common wode voltage	V _{ID} = 800 mV		0.25	Vcc - 0.9	
V _{IH}	Single-Ended Input High Voltage				Vcc	V
V_{IL}	Single-Ended Input Low Voltage	CLKinX driven single-ended (AC or DC coupled),		GND		V
V_{I_SE}	Single-Ended Input Voltage Swing ⁽⁷⁾⁽⁸⁾	within V _{CM} range	CLKinX* AC coupled to GND or externally biased within V _{CM} range		2	Vpp
V _{CM}	Single-Ended Input Common Mode Voltage			0.25	Vcc – 1.2	V
			f _{CLKin0} = 100 MHz		-84	
180	Mux Isolation, CLKin0 to	f _{OFFSET} > 50 kHz,	f _{CLKin0} = 200 MHz		-82	dBc
ISO _{MUX}	CLKin1	$P_{CLKinX} = 0 dBm$	$f_{CLKin0} = 500 \text{ MHz}$		-71	ubc
		f _{CLKin0} = 1000 MHz			-65	
CRYSTAL I	NTERFACE (OSCin, OSCout)				
F _{CLK}	External Clock Frequency Range ⁽⁵⁾	OSCin driven single-e	nded, OSCout floating		250	MHz
F _{XTAL}	Crystal Frequency Range	Fundamental mode creates $\leq 200 \Omega$ (10 to 30 ESR $\leq 125 \Omega$ (30 to 40	MHz)	10	40	MHz
C _{IN}	OSCin Input Capacitance				4	pF

⁽⁵⁾ Specification is ensured by characterization and is not tested in production.

⁽⁶⁾ See Differential Voltage Measurement Terminology for definition of V_{ID} and V_{OD} voltages.

⁽⁷⁾ Parameter is specified by design, not tested in production.

⁽⁸⁾ For clock input frequency ≥ 100 MHz, CLKinX can be driven with single-ended (LVCMOS) input swing up to 3.3 Vpp. For clock input frequency < 100 MHz, the single-ended input swing should be limited to 2 Vpp max to prevent input saturation (refer to *Driving the Clock Inputs* for interfacing 2.5 V/3.3 V LVCMOS clock input < 100 MHz to CLKinX).</p>

⁽⁹⁾ The ESR requirements stated must be met to ensure that the oscillator circuitry has no startup issues. However, lower ESR values for the crystal may be necessary to stay below the maximum power dissipation (drive level) specification of the crystal. Refer to Crystal Interface for crystal drive level considerations.

		TEST CO	MIN	TYP	MAX	UNIT		
LVPECL OUT	PUTS (CLKoutAn/CLKout/	An*, CLKoutBn/CLKoutB	n*)					
face	Maximum Output Frequency Full V _{OD}	V _{OD} ≥ 600 mV,	Vcco = $3.3 \text{ V} \pm 5\%$, R _T = 160Ω to GND	1.0	1.2		GHz	
f _{CLKout_FS}	Swing ⁽⁵⁾⁽¹⁰⁾	$R_L = 100 = \Omega$ differential	Vcco = 2.5 V \pm 5%, R _T = 91 Ω to GND	0.75	1		GHZ	
f	Maximum Output Frequency	V _{OD} ≥ 400 mV,	Vcco = $3.3 \text{ V} \pm 5\%$, R _T = 160Ω to GND	1.5	3.1		GHz	
f _{CLKout_RS}	Reduced V _{OD} Swing ⁽⁵⁾ (10)	$R_L = 100-\Omega$ differential	Vcco = 2.5 V \pm 5%, R _T = 91 Ω to GND	1.5	2.3		GHZ	
	Additive RMS Jitter, Integration Bandwidth	$Vcco = 2.5 V \pm 5\%$: R _T = 91 Ω to GND,	CLKin: 100 MHz, Slew rate ≥ 3 V/ns		77	98		
Jitter _{ADD}	10 kHz to 20 MHz ⁽⁵⁾⁽¹¹⁾⁽¹²⁾	$Vcco = 3.3 V \pm 5\%$: $R_T = 160 \text{ to GND}$, $R_L = 100-\Omega \text{ differential}$	CLKin: 156.25 MHz, Slew rate ≥ 3 V/ns		54	78	fs	
Jitter _{ADD} Inte			CLKin: 100 MHz, Slew rate ≥ 3 V/ns		59			
	Additive RMS Jitter Integration Bandwidth 1 MHz to 20 MHz ⁽¹¹⁾	Vcco = 3.3 V, R_T = 160 Ω to GND, R_I = 100-Ω differential	CLKin: 156.25 MHz, Slew rate ≥ 2.7 V/ns		64		fs	
	1 W 12 to 20 W 12	THE = 100 22 amoronia	CLKin: 625 MHz, Slew rate ≥ 3 V/ns		30			
littor	Additive RMS Jitter with	Vcco = 3.3 V,	CLKin: 156.25 MHz, J _{SOURCE} = 190 fs RMS (10 kHz to 1 MHz)		20		fo	
Jitter _{ADD}	LVPECL clock source from LMK03806 ⁽¹¹⁾ (13)	$R_T = 160 \Omega$ to GND, $R_L = 100-\Omega$ differential	CLKin: 156.25 MHz, J _{SOURCE} = 195 fs RMS (12 kHz to 20 MHz)		51		fs	
			CLKin: 100 MHz, Slew rate ≥ 3 V/ns		-162.5			
Noise Floor	Noise Floor f _{OFFSET} ≥ 10 MHz ⁽¹⁴⁾⁽¹⁵⁾	Vcco = 3.3 V, R_T = 160 Ω to GND, R_L = 100 Ω differential	CLKin: 156.25 MHz, Slew rate ≥ 2.7 V/ns		-158.1		dBc/Hz	
		TYL = 100 32 dilleteritial	CLKin: 625 MHz, Slew rate ≥ 3 V/ns		-154.4			
DUTY	Duty Cycle ⁽⁵⁾	50% input clock duty cyc	45%		55%			
V _{OH}	Output High Voltage		Vcco – 1.2	Vcco - 0.9	Vcco - 0.7	V		
V _{OL}	Output Low Voltage	$R_T = 25^{\circ}C$, DC Measurer $R_T = 50 \Omega$ to Vcco - 2 V	Vcco – 2	Vcco – 1.75	Vcco – 1.5	V		
V _{OD}	Output Voltage Swing ⁽⁶⁾			600	830	1000	mV	

- (10) See *Typical Characteristics* for output operation over frequency.
- (11) For the 100 MHz and 156.25 MHz clock input conditions, Additive RMS Jitter (J_{ADD}) is calculated using Method #1: J_{ADD} = SQRT(J_{OUT}² J_{SOURCE}²), where J_{OUT} is the total RMS jitter measured at the output driver and J_{SOURCE} is the RMS jitter of the clock source applied to CLKin. For the 625 MHz clock input condition, Additive RMS Jitter is approximated using Method #2: J_{ADD} = SQRT(2 × 10^{dBc/10}) / (2 × π × f_{CLK}), where dBc is the phase noise power of the Output Noise Floor integrated from 1 to 20 MHz bandwidth. The phase noise power can be calculated as: dBc = Noise Floor + 10 × log₁₀(20 MHz 1 MHz). The additive RMS jitter was approximated for 625 MHz using Method #2 because the RMS jitter of the clock source was not sufficiently low enough to allow practical use of Method #1. Refer to the "Noise Floor vs. CLKin Slew Rate" and "RMS Jitter vs. CLKin Slew Rate" plots in *Typical Characteristics*.
- (12) 100-MHz and 156.25-MHz input source from Rohde & Schwarz SMA100A Low-Noise Signal Generator and Sine-to-Square-wave Conversion block.
- (13) 156.25-MHz LVPECL clock source from LMK03806 with 20-MHz crystal reference (crystal part number: ECS-200-20-30BU-DU).

 J_{SOURCE} = 190 fs RMS (10 kHz to 1 MHz) and 195 fs RMS (12 kHz to 20 MHz). Refer to the LMK03806 datasheet for more information.
- (14) The noise floor of the output buffer is measured as the far-out phase noise of the buffer. Typically this offset is ≥ 10 MHz, but for lower frequencies this measurement offset can be as low as 5 MHz due to measurement equipment limitations.
- (15) Phase noise floor will degrade as the clock input slew rate is reduced. Compared to a single-ended clock, a differential clock input (LVPECL, LVDS) will be less susceptible to degradation in noise floor at lower slew rates due to its common mode noise rejection. However, TI recommends using the highest possible input slew rate for differential clocks to achieve optimal noise floor performance at the device outputs.

2, 2	at the Recommended Op	TEST CO	MIN	TYP	MAX	UNIT	
t _R	Output Rise Time 20% to 80% ⁽⁷⁾		form transmission line up		175	300	ps
t _F	Output Fall Time 80% to 20% (7)	to 10 in. with 50- Ω chara 100- Ω differential C _L ≤ 5		175	300	ps	
LVDS OUTPU	JTS (CLKoutAn/CLKoutAn	*, CLKoutBn/CLKoutBn*)					
f _{CLKout_FS}	Maximum Output Frequency Full V _{OD} Swing ⁽⁵⁾ (10)	V _{OD} ≥ 250 mV, R _L = 100	- Ω differential	1.0	1.6		GHz
f _{CLKout_RS}	Maximum Output Frequency Reduced V _{OD} Swing ^{(5) (10)}	V _{OD} ≥ 200 mV, R _L = 100	-Ω differential	1.5	2.1		GHz
list o	Additive RMS Jitter, Integration Bandwidth	D 400 O differential	CLKin: 100 MHz, Slew rate ≥ 3 V/ns		94	115	<i>t</i> -
Jitter _{ADD}	10 kHz to 20 MHz (5) (11) (12)	$R_L = 100-\Omega$ differential	CLKin: 156.25 MHz, Slew rate ≥ 3 V/ns		70	90	fs
			CLKin: 100 MHz, Slew rate ≥ 3 V/ns		89		
Jitter _{ADD}	Additive RMS Jitter Integration Bandwidth 1 MHz to 20 MHz ⁽¹¹⁾	Vcco = 3.3 V, R_L = 100- Ω differential	CLKin: 156.25 MHz, Slew rate ≥ 2.7 V/ns		77		fs
	I WII IZ TO ZU WII IZ		CLKin: 625 MHz, Slew rate ≥ 3 V/ns		37		
	Noise Floor f _{OFFSET} ≥ 10 MHz ⁽¹⁴⁾⁽¹⁵⁾		CLKin: 100 MHz, Slew rate ≥ 3 V/ns		-159.5		
Noise Floor		Vcco = 3.3 V, R_L = 100-Ω differential	CLKin: 156.25 MHz, Slew rate ≥ 2.7 V/ns		-157		dBc/Hz
			CLKin: 625 MHz, Slew rate ≥ 3 V/ns		-152.7		
DUTY	Duty Cycle ⁽⁵⁾	50% input clock duty cyc	le	45%		55%	
V _{OD}	Output Voltage Swing ⁽⁶⁾			250	400	450	mV
ΔV_{OD}	Change in Magnitude of V _{OD} for Complementary Output States	T _A = 25°C, DC Measurer	ment, $R_1 = 100-\Omega$	-50		50	mV
V _{OS}	Output Offset Voltage	differential	· -	1.125	1.25	1.375	V
ΔV_{OS}	Change in Magnitude of V _{OS} for Complementary Output States		-35		35	mV	
I _{SA} I _{SB}	Output Short Circuit Current Single Ended	T _A = 25°C, Single-ended	-24		24	mA	
I _{SAB}	Output Short Circuit Current Differential	Complementary outputs	-12		12	mA	
t _R	Output Rise Time 20% to 80% ⁽⁷⁾		e up to 10 inches with 50-		175	300	ps
t _F	Output Fall Time 80% to 20% ⁽⁷⁾	Ω characteristic impedan R _L = 100 Ω differential, Ω			175	300	ps

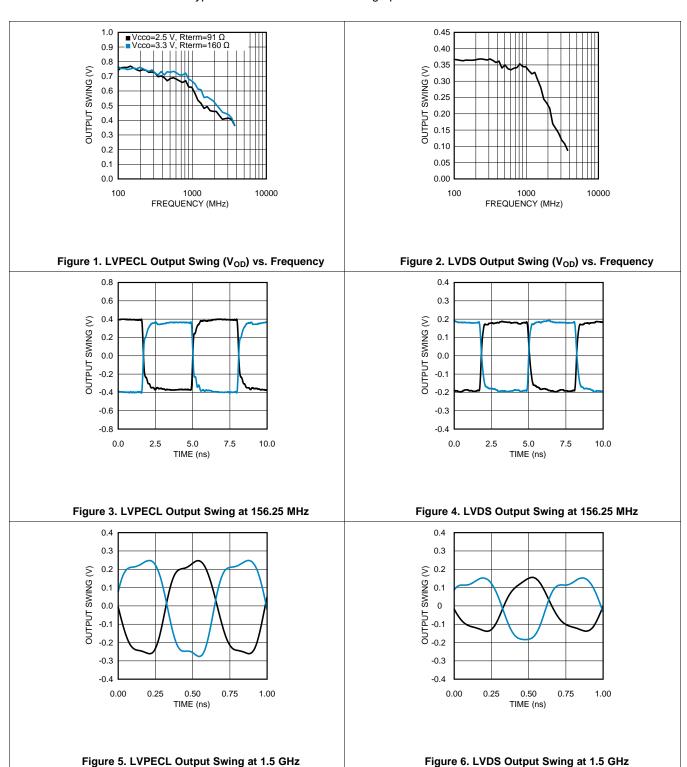
		TEST C	MIN	TYP	MAX	UNIT	
HCSL OUTPUT	TS (CLKoutAn/CLKoutAn	*, CLKoutBn/CLKoutBn	*)				
f _{CLKout}	Output Frequency Range ⁽⁵⁾	$R_L = 50 \Omega$ to GND, $C_L \le$	≤ 5 pF	DC		400	MHz
Jitter _{ADD_PCle}	Additive RMS Phase Jitter for PCIe 3.0 ⁽⁵⁾	PCIe Gen 3, PLL BW = 2-5 MHz, CDR = 10 MHz	CLKin: 100 MHz, Slew rate ≥ 0.6 V/ns		0.03	0.15	ps
list - n	Additive RMS Jitter	Vcco = 3.3 V,	CLKin: 100 MHz, Slew rate ≥ 3 V/ns		77		4-
Jitter _{ADD}	Integration Bandwidth 1 MHz to 20 MHz ⁽¹¹⁾	$R_T = 50 \Omega$ to GND	CLKin: 156.25 MHz, Slew rate ≥ 2.7 V/ns		86		fs
Naiss Flass	Floor Noise Floor f _{OFFSET} ≥ 10 MHz ⁽¹⁴⁾⁽¹⁵⁾	Vcco = 3.3 V,	CLKin: 100 MHz, Slew rate ≥ 3 V/ns		-161.3 -156.3		dBc/Hz
Noise Floor		$R_T = 50 \Omega$ to GND	CLKin: 156.25 MHz, Slew rate ≥ 2.7 V/ns				
DUTY	Duty Cycle ⁽⁵⁾	50% input clock duty cy	rcle	45%		55%	
V _{OH}	Output High Voltage	T 25°C DC Magazine	ement D FO O to CND	520	810	920	mV
V_{OL}	Output Low Voltage	T _A = 25 C, DC Measure	ement, $R_T = 50 \Omega$ to GND	-150	0.5	150	mV
V _{CROSS}	Absolute Crossing Voltage ⁽⁵⁾⁽¹⁶⁾	D 50 0 to CND C	. F . F	250	350	460	mV
ΔV_{CROSS}	Total Variation of V _{CROSS} (5) (16)	$R_L = 50 \Omega$ to GND, $C_L \le 5 pF$				140	mV
t_R	Output Rise Time 20% to 80% (7) (16)	250 MHz, Unifrom transmission line up to 10 inches with 50- Ω characteristic impedance, R _I = 50			300	500	ps
t_{F}	Output Fall Time 80% to 20% ⁽⁷⁾⁽¹⁶⁾	Ω to GND, C _L ≤ 5 pF	ctensue impedance, KL = 50		300	500	ps

⁽¹⁶⁾ AC timing parameters for HCSL or CMOS are dependent on output capacitive loading.

Unless otherwise specified: $Vcc = 3.3 \text{ V} \pm 5\%$, $Vcco = 3.3 \text{ V} \pm 5\%$, $2.5 \text{ V} \pm 5\%$, $-40 \text{ °C} \leq T_A \leq 85 \text{ °C}$, CLKin driven differentially, input slew rate $\geq 3 \text{ V/ns}$. Typical values represent most likely parametric norms at Vcc = 3.3 V, Vcco = 3.3 V,

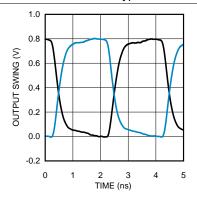
		TEST CO	MIN	TYP	MAX	UNIT	
LVCMOS OU	TPUT (REFout)	·	1				
f _{CLKout}	Output Frequency Range ⁽⁵⁾	C _L ≤ 5 pF		DC		250	MHz
Jitter _{ADD}	Additive RMS Jitter Integration Bandwidth 1 MHz to 20 MHz ⁽¹¹⁾	Vcco = 3.3 V, C _L ≤ 5 pF 100 MHz, Input Slew rate ≥ 3 V/ns			95		fs
Noise Floor	Noise Floor f _{OFFSET} ≥ 10 MHz ⁽¹⁴⁾⁽¹⁵⁾	Vcco = 3.3 V, C _L ≤ 5 pF 100 MHz, Input Slew rate ≥ 3 V/ns			-159.3		dBc/Hz
DUTY	Duty Cycle ⁽⁵⁾	50% input clock duty cyc	45%		55%		
V _{OH}	Output High Voltage	1-mA load	Vcco - 0.1			V	
V_{OL}	Output Low Voltage					0.1	V
	Output High Current		Vcco = 3.3 V		28		mA
I _{OH}	(Source)	Vo = Vcco / 2	Vcco = 2.5 V		20		mA
	Output Low Current	V0 = VCC0 / 2	Vcco = 3.3 V		28		A
I _{OL}	(Sink)		Vcco = 2.5 V		20		mA
t _R	Output Rise Time 20% to 80% ⁽⁷⁾⁽¹⁶⁾	250 MHz, Uniform transn		225	400	ps	
t _F	Output Fall Time 80% to 20% ⁽⁷⁾⁽¹⁶⁾	inches with 50- Ω characteristic impedance, R _L = 50 Ω to GND, C _L \leq 5 pF			225	400	ps
t _{EN}	Output Enable Time ⁽¹⁷⁾	C < 5 x 5				3	cycles
t _{DIS}	Output Disable Time ⁽¹⁷⁾	C _L ≤ 5 pF				3	cycles

⁽¹⁷⁾ Output Enable Time is the number of input clock cycles it takes for the output to be enabled after REFout_EN is pulled high. Similarly, Output Disable Time is the number of input clock cycles it takes for the output to be disabled after REFout_EN is pulled low. The REFout_EN signal should have an edge transition much faster than that of the input clock period for accurate measurement.


		TE	MIN	TYP	MAX	UNIT	
PROPAGAT	TON DELAY and OUTPUT SI	KEW					
t _{PD_PECL}	Propagation Delay CLKin-to-LVPECL ⁽⁷⁾	$R_T = 160 \Omega$ to GN $C_L \le 5 pF$	180	360	540	ps	
t _{PD_LVDS}	Propagation Delay CLKin-to-LVDS ⁽⁷⁾	$R_L = 100-\Omega$ difference	200	400	600	ps	
t _{PD_HCSL}	Propagation Delay CLKin-to-HCSL ⁽⁷⁾⁽¹⁶⁾	$R_T = 50 \Omega$ to GND, $C_L \le 5 pF$		295	590	885	ps
	Propagation Delay	0 45 -5	Vcco = 3.3 V	900	1475	2300	20
t _{PD_CMOS}	CLKin-to-LVCMOS ^{(7) (16)}	C _L ≤ 5 pF	Vcco = 2.5 V	1000	1550	2700	ps
t _{SK(O)}	Output Skew LVPECL/LVDS/HCSL (5)(16)(18)	Skew specified between any two CLKouts with the same buffer type. Load conditions per output type are the same as propagation delay specifications.			30	50	ps
t _{SK(PP)}	Part-to-Part Output Skew LVPECL/LVDS/HCSL (7)(16)(18)				80	120	ps

⁽¹⁸⁾ Output skew is the propagation delay difference between any two outputs with identical output buffer type and equal loading while operating at the same supply voltage and temperature conditions.

6.6 Typical Characteristics


Unless otherwise specified: Vcc = 3.3 V, Vcco = 3.3 V, $T_A = 25 ^{\circ}\text{C}$, CLKin driven differentially, input slew rate $\geq 3 \text{ V/ns}$. Consult Table 1 at the end of the *Typical Characteristics* section for graph notes.

Typical Characteristics (continued)

Unless otherwise specified: Vcc = 3.3 V, Vcco = 3.3 V, $T_A = 25 \text{ °C}$, CLKin driven differentially, input slew rate $\geq 3 \text{ V/ns}$. Consult Table 1 at the end of the *Typical Characteristics* section for graph notes.

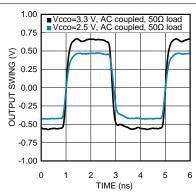
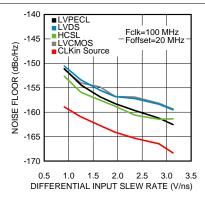



Figure 7. HCSL Output Swing at 250 MHz

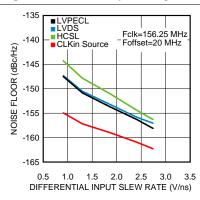
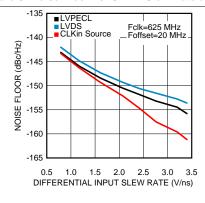
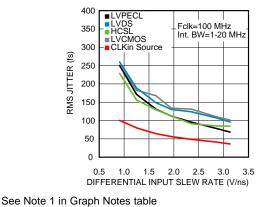



Figure 9. Noise Floor vs. CLKin Slew Rate at 100 MHz

Figure 10. Noise Floor vs. CLKin Slew Rate at 156.25 MHz



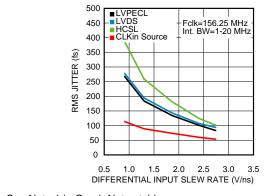

Figure 11. Noise Floor vs. CLKin Slew Rate at 625 MHz

Figure 12. RMS Jitter vs. CLKin Slew Rate at 100 MHz

NSTRUMENTS

Typical Characteristics (continued)

Unless otherwise specified: Vcc = 3.3 V, Vcco = 3.3 V, $T_A = 25 ^{\circ}\text{C}$, CLKin driven differentially, input slew rate $\geq 3 \text{ V/ns}$. Consult Table 1 at the end of the Typical Characteristics section for graph notes.

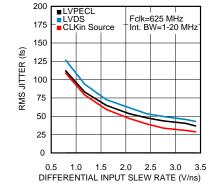
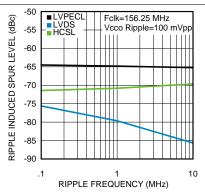
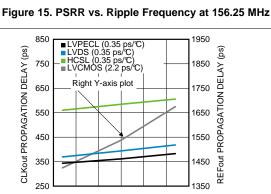




Figure 14. RMS Jitter vs. CLKin Slew Rate at 625 MHz

Figure 13. RMS Jitter vs. CLKin Slew Rate at 156.25 MHz

0 25 50 75 100

TEMPERATURE (℃)

-50

Figure 17. Propagation Delay vs. Temperature

-50 -55

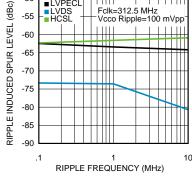
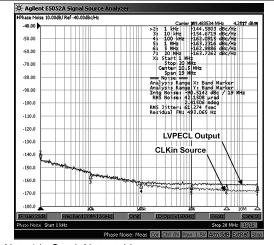



Figure 16. PSRR vs. Ripple Frequency at 312.5 MHz

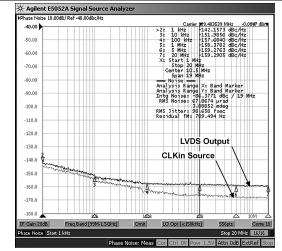
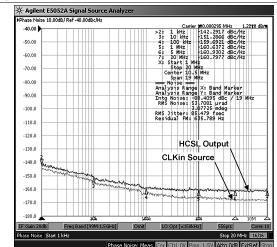

See Note 1 in Graph Notes table

Figure 18. LVPECL Phase Noise at 100 MHz



Typical Characteristics (continued)

Unless otherwise specified: Vcc = 3.3 V, Vcco = 3.3 V, $T_A = 25 ^{\circ}\text{C}$, CLKin driven differentially, input slew rate $\geq 3 \text{ V/ns}$. Consult Table 1 at the end of the *Typical Characteristics* section for graph notes.

See Note 1 in Graph Notes table

See Note 1 in Graph Notes table

Figure 19. LVDS Phase Noise at 100 MHz

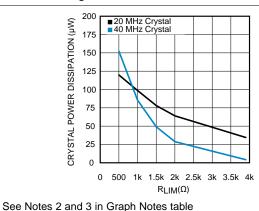
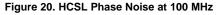
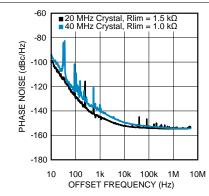




Figure 21. Crystal Power Dissipation vs. R_{LIM}

See Notes 2 and 3 in Graph Notes table

Figure 22. LVDS Phase Noise in Crystal Mode

Table 1. Graph Notes

NOTE	
(1)	The typical RMS jitter values in the plots show the total output RMS jitter (J_{OUT}) for each output buffer type and the source clock RMS jitter (J_{SOURCE}). From these values, the Additive RMS Jitter can be calculated as: $J_{ADD} = SQRT(J_{OUT}^2 - J_{SOURCE}^2)$.
(2)	20 MHz crystal characteristics: Abracon ABL series, AT cut, C_L = 18 pF , C_0 = 4.4 pF measured (7 pF max), ESR = 8.5 Ω measured (40 Ω max), and Drive Level = 1 mW max (100 μ W typical).
(3)	40 MHz crystal characteristics: Abracon ABLS2 series, AT cut, C_L = 18 pF , C_0 = 5 pF measured (7 pF max), ESR = 5 Ω measured (40 Ω max), and Drive Level = 1 mW max (100 μ W typical).

7 Parameter Measurement Information

7.1 Differential Voltage Measurement Terminology

The differential voltage of a differential signal can be described by two different definitions causing confusion when reading datasheets or communicating with other engineers. This section will address the measurement and description of a differential signal so that the reader will be able to understand and discern between the two different definitions when used.

The first definition used to describe a differential signal is the absolute value of the voltage potential between the inverting and non-inverting signal. The symbol for this first measurement is typically V_{ID} or V_{OD} depending on if an input or output voltage is being described.

The second definition used to describe a differential signal is to measure the potential of the non-inverting signal with respect to the inverting signal. The symbol for this second measurement is V_{SS} and is a calculated parameter. Nowhere in the IC does this signal exist with respect to ground, it only exists in reference to its differential pair. V_{SS} can be measured directly by oscilloscopes with floating references, otherwise this value can be calculated as twice the value of V_{CD} as described in the first description.

Figure 23 illustrates the two different definitions side-by-side for inputs and Figure 24 illustrates the two different definitions side-by-side for outputs. The V_{ID} (or V_{OD}) definition show the DC levels, V_{IH} and V_{OL} (or V_{OH} and V_{OL}), that the non-inverting and inverting signals toggle between with respect to ground. V_{SS} input and output definitions show that if the inverting signal is considered the voltage potential reference, the non-inverting signal voltage potential is now increasing and decreasing above and below the non-inverting reference. Thus the peak-to-peak voltage of the differential signal can be measured.

V_{ID} and V_{OD} are often defined as volts (V) and V_{SS} is often defined as volts peak-to-peak (V_{PP}).

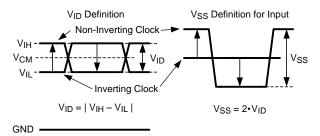


Figure 23. Two Different Definitions for Differential Input Signals

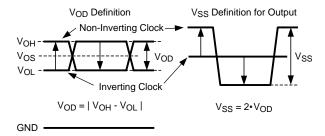
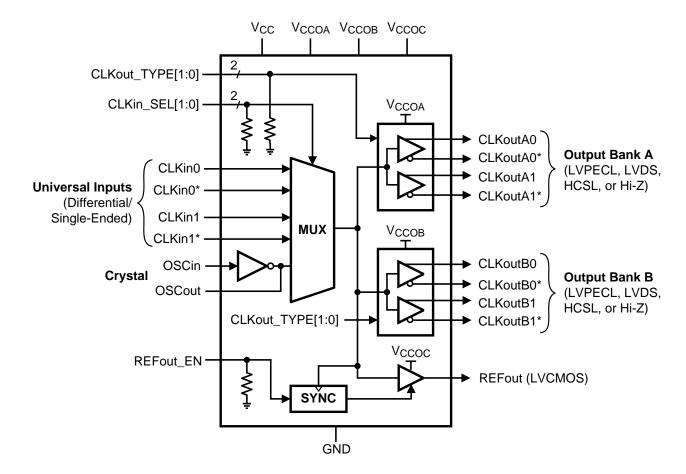


Figure 24. Two Different Definitions for Differential Output Signals

Refer to Application Note AN-912 Common Data Transmission Parameters and their Definitions (SNLA036) for more information.



8 Detailed Description

8.1 Overview

The LMK00304 is a 4-output differential clock fanout buffer with low additive jitter that can operate up to 3.1 GHz. It features a 3:1 input multiplexer with an optional crystal oscillator input, two banks of 2 differential outputs with multi-mode buffers (LVPECL, LVDS, HCSL, or Hi-Z), one LVCMOS output, and 3 independent output buffer supplies. The input selection and output buffer modes are controlled via pin strapping. The device is offered in a 32-pin WQFN package and leverages much of the high-speed, low-noise circuit design employed in the LMK04800 family of clock conditioners.

8.2 Functional Block Diagram

8.3 Feature Description

8.3.1 V_{CC} and V_{CCO} Power Supplies

The LMK00304 has separate 3.3 V core supply (V_{CC}) and 3 independent 3.3 V/2.5 V output power supplies (V_{CCOA} , V_{CCOB} , V_{CCOC}). Output supply operation at 2.5 V enables lower power consumption and output-level compatibility with 2.5 V receiver devices. The output levels for LVPECL (V_{OH} , V_{OL}) and LVCMOS (V_{OH}) are referenced to its respective Vcco supply, while the output levels for LVDS and HCSL are relatively constant over the specified Vcco range. Refer to *Power Supply Recommendations* for additional supply related considerations, such as power dissipation, power supply bypassing, and power supply ripple rejection (PSRR).

NOTE

Care should be taken to ensure the Vcco voltages do not exceed the Vcc voltage to prevent turning-on the internal ESD protection circuitry.

8.3.2 Clock Inputs

The input clock can be selected from CLKin0/CLKin0*, CLKin1/CLKin1*, or OSCin. Clock input selection is controlled using the CLKin_SEL[1:0] inputs as shown in Table 2. Refer to *Driving the Clock Inputs* for clock input requirements. When CLKin0 or CLKin1 is selected, the crystal circuit is powered down. When OSCin is selected, the crystal oscillator circuit will start-up and its clock will be distributed to all outputs. Refer to *Crystal Interface* for more information. Alternatively, OSCin may be driven by a single-ended clock (up to 250 MHz) instead of a crystal.

Table 2. Input Selection

CLKin_SEL1	CLKin_SEL0	SELECTED INPUT
0	0	CLKin0, CLKin0*
0	1	CLKin1, CLKin1*
1	X	OSCin

Table 3 shows the output logic state vs. input state when either CLKin0/CLKin0* or CLKin1/CLKin1* is selected. When OSCin is selected, the output state will be an inverted copy of the OSCin input state.

Table 3. CLKin Input vs. Output States

STATE of SELECTED CLKin	STATE of ENABLED OUTPUTS
CLKinX and CLKinX* inputs floating	Logic low
CLKinX and CLKinX* inputs shorted together	Logic low
CLKin logic low	Logic low
CLKin logic high	Logic high

8.3.3 Clock Outputs

The differential output buffer type for both Bank A and B outputs are configured using the CLKout_TYPE[1:0] as shown in Table 4. For applications where all differential outputs are not needed, any unused output pin should be left floating with a minimum copper length (see note below) to minimize capacitance and potential coupling and reduce power consumption. If all differential outputs are not used, it is recommended to disable (Hi-Z) the banks to reduce power. Refer to *Termination and Use of Clock Drivers* for more information on output interface and termination techniques.

NOTE

For best soldering practices, the minimum trace length for any unused pin should extend to include the pin solder mask. This way during reflow, the solder has the same copper area as connected pins. This allows for good, uniform fillet solder joints helping to keep the IC level during reflow.

Table 4. Differential Output Buffer Type Selection

CLKout_ TYPE1	CLKout_ TYPE0	CLKoutX BUFFER TYPE (BANK A and B)
0	0	LVPECL
0	1	LVDS
1	0	HCSL
1	1	Disabled (Hi-Z)

8.3.3.1 Reference Output

The reference output (REFout) provides a LVCMOS copy of the selected input clock. The LVCMOS output high level is referenced to the Vcco voltage. REFout can be enabled or disabled using the enable input pin, REFout EN, as shown in Table 5.

Table 5. Reference Output Enable

REFout_EN	REFout STATE
0	Disabled (Hi-Z)
1	Enabled

The REFout_EN input is internally synchronized with the selected input clock by the SYNC block. This synchronizing function prevents glitches and runt pulses from occurring on the REFout clock when enabled or disabled. REFout will be enabled within 3 cycles (t_{EN}) of the input clock after REFout_EN is toggled high. REFout will be disabled within 3 cycles (t_{DIS}) of the input clock after REFout_EN is toggled low.

When REFout is disabled, the use of a resistive loading can be used to set the output to a predetermined level. For example, if REFout is configured with a 1 $k\Omega$ load to ground, then the output will be pulled to low when disabled.

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Driving the Clock Inputs

The LMK00304 has two universal inputs (CLKin0/CLKin0* and CLKin1/CLKin1*) that can accept DC-coupled 3.3V/2.5V LVPECL, LVDS, CML, SSTL, and other differential and single-ended signals that meet the input requirements specified in *Electrical Characteristics*. The device can accept a wide range of signals due to its wide input common mode voltage range (V_{CM}) and input voltage swing (V_{ID}) / dynamic range. For 50% duty cycle and DC-balanced signals, AC coupling may also be employed to shift the input signal to within the V_{CM} range. Refer to *Termination and Use of Clock Drivers* for signal interfacing and termination techniques.

To achieve the best possible phase noise and jitter performance, it is mandatory for the input to have high slew rate of 3 V/ns (differential) or higher. Driving the input with a lower slew rate will degrade the noise floor and jitter. For this reason, a differential signal input is recommended over single-ended because it typically provides higher slew rate and common-mode-rejection. Refer to the "Noise Floor vs. CLKin Slew Rate" and "RMS Jitter vs. CLKin Slew Rate" plots in *Typical Characteristics*.

While it is recommended to drive the CLKin/CLKin* pair with a differential signal input, it is possible to drive it with a single-ended clock provided it conforms to the Single-Ended Input specifications for CLKin pins listed in the *Electrical Characteristics*. For large single-ended input signals, such as 3.3V or 2.5V LVCMOS, a 50 Ω load resistor should be placed near the input for signal attenuation to prevent input overdrive as well as for line termination to minimize reflections. Again, the single-ended input slew rate should be as high as possible to minimize performance degradation. The CLKin input has an internal bias voltage of about 1.4 V, so the input can be AC coupled as shown in Figure 25. The output impedance of the LVCMOS driver plus Rs should be close to 50 Ω to match the characteristic impedance of the transmission line and load termination.

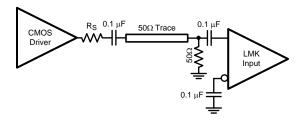


Figure 25. Single-Ended LVCMOS Input, AC Coupling

A single-ended clock may also be DC coupled to CLKinX as shown in Figure 26. A 50- Ω load resistor should be placed near the CLKin input for signal attenuation and line termination. Because half of the single-ended swing of the driver ($V_{O,PP}$ / 2) drives CLKinX, CLKinX* should be externally biased to the midpoint voltage of the attenuated input swing (($V_{O,PP}$ / 2) × 0.5). The external bias voltage should be within the specified input common voltage (V_{CM}) range. This can be achieved using external biasing resistors in the k Ω range (R_{B1} and R_{B2}) or another low-noise voltage reference. This will ensure the input swing crosses the threshold voltage at a point where the input slew rate is the highest.

If the LVCMOS driver cannot achieve sufficient swing with a DC-terminated 50Ω load at the CLKinX input as shown in Figure 26, then consider connecting the 50Ω load termination to ground through a capacitor (C_{AC}). This AC termination blocks the DC load current on the driver, so the voltage swing at the input is determined by the voltage divider formed by the source (Ro+Rs) and 50Ω load resistors. The value for C_{AC} depends on the trace delay, Td, of the 50Ω transmission line, where $C_{AC} >= 3*Td/50\Omega$.

23

Driving the Clock Inputs (continued)

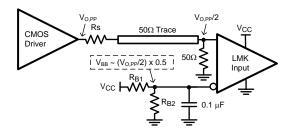


Figure 26. Single-Ended LVCMOS Input, DC Coupling with Common Mode Biasing

If the crystal oscillator circuit is not used, it is possible to drive the OSCin input with an single-ended external clock as shown in Figure 27. The input clock should be AC coupled to the OSCin pin, which has an internally-generated input bias voltage, and the OSCout pin should be left floating. While OSCin provides an alternative input to multiplex an external clock, it is recommended to use either universal input (CLKinX) since it offers higher operating frequency, better common mode and power supply noise rejection, and greater performance over supply voltage and temperature variations.

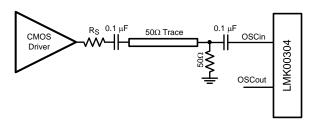


Figure 27. Driving OSCin with a Single-Ended Input

9.2 Crystal Interface

The LMK00304 has an integrated crystal oscillator circuit that supports a fundamental mode, AT-cut crystal. The crystal interface is shown in Figure 28.

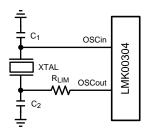


Figure 28. Crystal Interface

The load capacitance (C_L) is specific to the crystal, but usually on the order of 18 - 20 pF. While C_L is specified for the crystal, the OSCin input capacitance ($C_{IN} = 4$ pF typical) of the device and PCB stray capacitance ($C_{STRAY} \sim 1\sim3$ pF) can affect the discrete load capacitor values, C_1 and C_2 .

For the parallel resonant circuit, the discrete capacitor values can be calculated as follows:

$$C_{1} = (C_{1} * C_{2}) / (C_{1} + C_{2}) + C_{IN} + C_{STRAY}$$
(1)

Typically, $C_1 = C_2$ for optimum symmetry, so Equation 1 can be rewritten in terms of C_1 only:

$$C_{L} = C_{1}^{2} / (2 * C_{1}) + C_{IN} + C_{STRAY}$$
 (2)

Finally, solve for C₁:

$$C_1 = (C_L - C_{IN} - C_{STRAY})^*2$$
 (3)

(4)

Crystal Interface (continued)

Electrical Characteristics provides crystal interface specifications with conditions that ensure start-up of the crystal, but it does not specify crystal power dissipation. The designer will need to ensure the crystal power dissipation does not exceed the maximum drive level specified by the crystal manufacturer. Overdriving the crystal can cause premature aging, frequency shift, and eventual failure. Drive level should be held at a sufficient level necessary to start-up and maintain steady-state operation.

The power dissipated in the crystal, P_{XTAL}, can be computed by:

$$P_{XTAL} = I_{RMS}^2 * R_{ESR}^* (1 + C_0/C_L)^2$$

where

- I_{RMS} is the RMS current through the crystal.
- R_{ESR} is the max. equivalent series resistance specified for the crystal
- C_L is the load capacitance specified for the crystal
- ullet C_0 is the min. shunt capacitance specified for the crystal

I_{RMS} can be measured using a current probe (e.g. Tektronix CT-6 or equivalent) placed on the leg of the crystal connected to OSCout with the oscillation circuit active.

As shown in Figure 28, an external resistor, R_{LIM} , can be used to limit the crystal drive level, if necessary. If the power dissipated in the selected crystal is higher than the drive level specified for the crystal with R_{LIM} shorted, then a larger resistor value is mandatory to avoid overdriving the crystal. However, if the power dissipated in the crystal is less than the drive level with R_{LIM} shorted, then a zero value for R_{LIM} can be used. As a starting point, a suggested value for R_{LIM} is 1.5 k Ω .

9.3 Termination and Use of Clock Drivers

When terminating clock drivers keep in mind these guidelines for optimum phase noise and jitter performance:

- Transmission line theory should be followed for good impedance matching to prevent reflections.
- Clock drivers should be presented with the proper loads.
 - LVDS outputs are current drivers and require a closed current loop.
 - HCSL drivers are switched current outputs and require a DC path to ground via 50 Ω termination.
 - LVPECL outputs are open emitter and require a DC path to ground.
- Receivers should be presented with a signal biased to their specified DC bias level (common mode voltage) for proper operation. Some receivers have self-biasing inputs that automatically bias to the proper voltage level; in this case, the signal should normally be AC coupled.

It is possible to drive a non-LVPECL or non-LVDS receiver with a LVDS or LVPECL driver as long as the above guidelines are followed. Check the data sheet of the receiver or input being driven to determine the best termination and coupling method to be sure the receiver is biased at the optimum DC voltage (common mode voltage).

9.3.1 Termination for DC-Coupled Differential Operation

For DC-coupled operation of an LVDS driver, terminate with 100 Ω as close as possible to the LVDS receiver as shown in Figure 29.

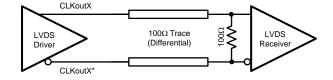


Figure 29. Differential LVDS Operation, DC Coupling, No Biasing by the Receiver

For DC-coupled operation of an HCSL driver, terminate with 50 Ω to ground near the driver output as shown in Figure 30. Series resistors, Rs, may be used to limit overshoot due to the fast transient current. Because HCSL drivers require a DC path to ground, AC coupling is not allowed between the output drivers and the 50- Ω termination resistors.

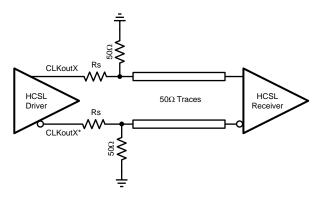


Figure 30. HCSL Operation, DC Coupling

For DC-coupled operation of an LVPECL driver, terminate with 50 Ω to Vcco - 2 V as shown in Figure 31. Alternatively terminate with a Thevenin equivalent circuit as shown in Figure 32 for Vcco (output driver supply voltage) = 3.3 V and 2.5 V. In the Thevenin equivalent circuit, the resistor dividers set the output termination voltage (V_{TT}) to Vcco - 2 V.

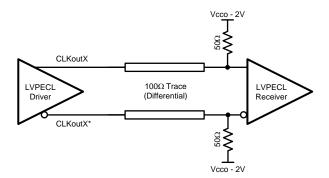


Figure 31. Differential LVPECL Operation, DC Coupling

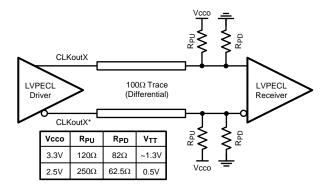
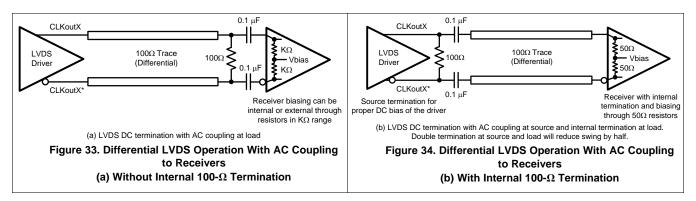


Figure 32. Differential LVPECL Operation, DC Coupling, Thevenin Equivalent

9.3.2 Termination for AC-Coupled Differential Operation


AC coupling allows for shifting the DC bias level (common mode voltage) when driving different receiver standards. Because AC coupling prevents the driver from providing a DC bias voltage at the receiver, it is important to ensure the receiver is biased to its ideal DC level.

When driving differential receivers with an LVDS driver, the signal may be AC coupled by adding DC-blocking capacitors; however the proper DC bias point needs to be established at both the driver side and the receiver side. The recommended termination scheme depends on whether the differential receiver has integrated termination resistors or not.

When driving a differential receiver without internal $100-\Omega$ differential termination, the AC-coupling capacitors should be placed between the load termination resistor and the receiver to allow a DC path for proper biasing of the LVDS driver. This is shown in Figure 33. The load termination resistor and AC-coupling capacitors should be placed as close as possible to the receiver inputs to minimize stub length. The receiver can be biased internally or externally to a reference voltage within the receiver's common mode input range through resistors in the kilo-ohm range.

When driving a differential receiver with internal $100-\Omega$ differential termination, a source termination resistor should be placed before the AC-coupling capacitors for proper DC biasing of the driver as shown in Figure 34. However, with a $100-\Omega$ resistor at the source and the load (that is, double terminated), the equivalent resistance seen by the LVDS driver is $50~\Omega$ which causes the effective signal swing at the input to be reduced by half. If a self-terminated receiver requires input swing greater than 250~mVpp (differential) as well as AC coupling to its inputs, then the LVDS driver with the double-terminated arrangement in Figure 34 may not meet the minimum input swing requirement; alternatively, the LVPECL or HCSL output driver format with AC coupling is recommended to meet the minimum input swing required by the self-terminated receiver.

When using AC coupling with LVDS outputs, there may be a startup delay observed in the clock output due to capacitor charging. The examples in Figure 33 and Figure 34 use 0.1- μ F capacitors, but this value may be adjusted to meet the startup requirements for the particular application.

LVPECL drivers require a DC path to ground. When AC coupling an LVPECL signal use $160-\Omega$ emitter resistors (or $91~\Omega$ for Vcco = 2.5~V) close to the LVPECL driver to provide a DC path to ground as shown in Figure 38. For proper receiver operation, the signal should be biased to the DC bias level (common mode voltage) specified by the receiver. The typical DC bias voltage (common mode voltage) for LVPECL receivers is 2 V. Alternatively, a Thevenin equivalent circuit forms a valid termination as shown in Figure 35 for Vcco = 3.3~V and 2.5~V. Note: this Thevenin circuit is different from the DC coupled example in Figure 32, since the voltage divider is setting the input common mode voltage of the receiver.

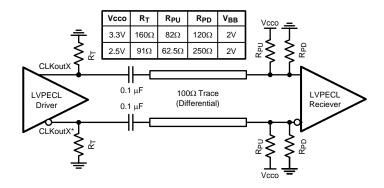


Figure 35. Differential LVPECL Operation, AC Coupling, Thevenin Equivalent

9.3.3 Termination for Single-Ended Operation

A balun can be used with either LVDS or LVPECL drivers to convert the balanced, differential signal into an unbalanced, single-ended signal.

It is possible to use an LVPECL driver as one or two separate 800 mV p-p signals. When DC coupling one of the LMK00304 LVPECL driver of a CLKoutX/CLKoutX* pair, be sure to properly terminate the unused driver. When DC coupling on of the LMK00304 LVPECL drivers, the termination should be 50 Ω to Vcco – 2 V as shown in Figure 36. The Thevenin equivalent circuit is also a valid termination as shown in Figure 37 for Vcco = 3.3 V.

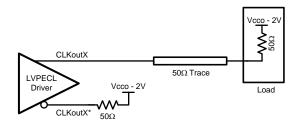


Figure 36. Single-Ended LVPECL Operation, DC Coupling

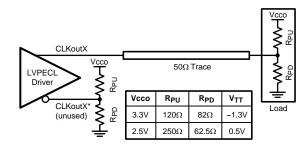


Figure 37. Single-Ended LVPECL Operation, DC Coupling, Thevenin Equivalent

When AC coupling an LVPECL driver use a 160- Ω emitter resistor (or 91 Ω for Vcco = 2.5 V) to provide a DC path to ground and ensure a 50- Ω termination with the proper DC bias level for the receiver. The typical DC bias voltage for LVPECL receivers is 2 V. If the companion driver is not used, it should be terminated with either a proper AC or DC termination. This latter example of AC coupling a single-ended LVPECL signal can be used to measure single-ended LVPECL performance using a spectrum analyzer or phase noise analyzer. When using most RF test equipment no DC bias point (0 VDC) is required for safe and proper operation. The internal 50 Ω termination the test equipment correctly terminates the LVPECL driver being measured as shown in Figure 38. When using only one LVPECL driver of a CLKoutX/CLKoutX* pair, be sure to properly terminated the unused driver.

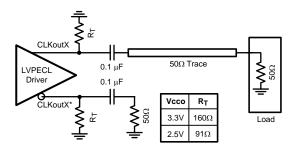


Figure 38. Single-Ended LVPECL Operation, AC Coupling

10 Power Supply Recommendations

10.1 Power Supply Sequencing

When powering the Vcc and Vcco pins from separate supply rails, TI recommends that the supplies to reach their regulation point at approximately the same time while ramping up, or reach ground potential at the same time while ramping down. Using simultaneous or ratiometric power supply sequencing prevents internal current flow from Vcc to Vcco pins that could occur when Vcc is powered before Vcco.

10.2 Current Consumption and Power Dissipation Calculations

The current consumption values specified in *Electrical Characteristics* can be used to calculate the total power dissipation and IC power dissipation for any device configuration. The total V_{CC} core supply current (I_{CC_TOTAL}) can be calculated using Equation 5:

 $I_{CC_TOTAL} = I_{CC_CORE} + I_{CC_BANKS} + I_{CC_CMOS}$

where

- I_{CC CORE} is the V_{CC} current for core logic and input blocks and depends on selected input (CLKinX or OSCin).
- I_{CC_BANKS} is the V_{CC} current for Banks A & B and depends on the selected output type (I_{CC_PECL}, I_{CC_LVDS}, I_{CC_HCSL}, or 0 mA if disabled).
- I_{CC CMOS} is the V_{CC} current for the LVCMOS output (or 0 mA if REFout is disabled).

Because the output supplies (V_{CCOA} , V_{CCOB} , V_{CCOC}) can be powered from 3 independent voltages, the respective output supply currents ($I_{CCO_BANK_A}$, $I_{CCO_BANK_B}$, and I_{CCO_CMOS}) should be calculated separately.

 I_{CCO_BANK} for either Bank A or B may be taken as 50% of the corresponding output supply current specified for two banks (I_{CCO_PECL} , I_{CCO_LVDS} , or I_{CCO_HCSL}) provided the output loading matches the specified conditions. Otherwise, I_{CCO_BANK} should be calculated per bank using Equation 6:

 $I_{CCO_BANK} = I_{BANK_BIAS} + (N \times I_{OUT_LOAD})$

where

- I_{BANK BIAS} is the output bank bias current (fixed value).
- I_{OUT LOAD} is the DC load current per loaded output pair.
- N is the number of loaded output pairs (N = 0 to 2).

Table 6 shows the typical I_{BANK_BIAS} values and I_{OUT_LOAD} expressions for LVPECL, LVDS, and HCSL.

For LVPECL, it is possible to use a larger termination resistor (R_T) to ground instead of terminating with 50 Ω to $V_{TT} = Vcco$ - 2 V; this technique is commonly used to eliminate the extra termination voltage supply (V_{TT}) and potentially reduce device power dissipation at the expense of lower output swing. For example, when Vcco is 3.3 V, a R_T value of 160 Ω to ground will eliminate the 1.3 V termination supply without sacrificing much output swing. In this case, the typical I_{OUT_LOAD} is 25 mA, so I_{CCO_BANK} for one LVPECL bank reduces to 63 mA (vs. 67.5 mA with 50 Ω resistors to Vcco - 2 V).

Table 6. Typical Output Bank Bias and Load Currents

CURRENT PARAMETER	LVPECL	LVDS	HCSL
I _{BANK_BIAS}	13 mA	11.6 mA	2.4 mA
I _{OUT_LOAD}	$(V_{OH} - V_{TT})/R_T + (V_{OL} - V_{TT})/R_T$	0 mA (No DC load current)	V _{OH} /R _T

Once the current consumption is known for each supply, the total power dissipation (P_{TOTAL}) can be calculated:

$$P_{\text{TOTAL}} = (V_{\text{CC}} \times I_{\text{CC} \text{ TOTAL}}) + (V_{\text{CCOA}} \times I_{\text{CCO BANK}}) + (V_{\text{CCOB}} \times I_{\text{CCO BANK}}) + (V_{\text{CCOC}} \times I_{\text{CCO CMOS}})$$
(7

If the device is configured with LVPECL and/or HCSL outputs, then it is also necessary to calculate the power dissipated in any termination resistors (P_{RT_PECL} and P_{RT_HCSL}) and in any LVPECL termination voltages (P_{VTT_PECL}). The external power dissipation values can be calculated as follows:

$$P_{RT PECL} (per LVPECL pair) = (V_{OH} - V_{TT})^2 / R_T + (V_{OL} - V_{TT})^2 / R_T$$
(8)

$$P_{VTT PECL} (per LVPECL pair) = V_{TT} \times [(V_{OH} - V_{TT})/R_T + (V_{OL} - V_{TT})/R_T]$$

$$(9)$$

$$P_{RT \text{ HCSL}} \text{ (per HCSL pair)} = V_{OH}^2 / R_T \tag{10}$$

(6)

Finally, the IC power dissipation (P_{DEVICE}) can be computed by subtracting the external power dissipation values from P_{TOTAL} as follows:

$$P_{DEVICE} = P_{TOTAL} - N_1 \times (P_{RT_PECL} + P_{VTT_PECL}) - N_2 \times P_{RT_HCSL}$$

where

- N₁ is the number of LVPECL output pairs with termination resistors to V_{TT} (usually Vcco 2 V or GND).
- N₂ is the number of HCSL output pairs with termination resistors to GND.

(11)

10.2.1 Power Dissipation Example: Worst-Case Dissipation

This example shows how to calculate IC power dissipation for a configuration to estimate **worst-case power dissipation**. In this case, the maximum supply voltage and supply current values specified in *Electrical Characteristics* are used.

- Max V_{CC} = V_{CCO} = 3.465 V. Max I_{CC} and I_{CCO} values.
- CLKin0/CLKin0* input is selected.
- Banks A and B are configured for LVPECL: all outputs terminated with 50 Ω to $V_T = Vcco 2 V$.
- REFout is enabled with 5-pF load.
- T_A = 85°C

Using the power calculations from the previous section and maximum supply current specifications, we can compute P_{TOTAL} and P_{DEVICE} .

- From Equation 5: $I_{CC TOTAL} = 10.5 \text{ mA} + 48 \text{ mA} + 5.5 \text{ mA} = 64 \text{ mA}$
- From I_{CCO PECL} max spec: I_{CCO_BANK} = 50% of I_{CCO_PECL} = 81.5 mA
- From Equation 7: P_{TOTAL} = (3.465 V x 64 mA) + (3.465 V x 81.5 mA)+ (3.465 V x 81.5 mA) + (3.465 V x 10 mA) = 821 mW
- From Equation 8: $P_{RT_PECL} = ((2.57 \text{ V} 1.47 \text{ V})^2/50 \Omega) + ((1.72 \text{ V} 1.47 \text{ V})^2/50 \Omega) = 25.5 \text{ mW}$ (per output pair)
- From Equation 9: $P_{VTT_PECL} = 1.47 \text{ V} \times [((2.57 \text{ V} 1.47 \text{ V}) / 50 \Omega) + ((1.72 \text{ V} 1.47 \text{ V}) / 50 \Omega)] = 39.5 \text{ mW}$ (per output pair)
- From Equation 10: P_{RT HCSL} = 0 mW (no HCSL outputs)
- From Equation 11: P_{DEVICE} = 821 mW (4 x (25.5 mW + 39.5 mW)) 0 mW = 561 mW

In this worst-case example, the IC device will dissipate about 561 mW or 68% of the total power (821 mW), while the remaining 32% will be dissipated in the emitter resistors (102 mW for 4 pairs) and termination voltage (158 mW into Vcco - 2 V). Based on θ_{JA} of 38.1°C/W, the estimate die junction temperature would be about 21.4°C above ambient, or 106.4°C when $T_A = 85$ °C.

10.3 Power Supply Bypassing

The Vcc and Vcco power supplies should have a high-frequency bypass capacitor, such as 0.1 μ F or 0.01 μ F, placed very close to each supply pin. 1- μ F to 10- μ F decoupling capacitors should also be placed nearby the device between the supply and ground planes. All bypass and decoupling capacitors should have short connections to the supply and ground plane through a short trace or via to minimize series inductance.

10.3.1 Power Supply Ripple Rejection

In practical system applications, power supply noise (ripple) can be generated from switching power supplies, digital ASICs or FPGAs, and so forth. While power supply bypassing will help filter out some of this noise, it is important to understand the effect of power supply ripple on the device performance. When a single-tone sinusoidal signal is applied to the power supply of a clock distribution device, such as LMK00304, it can produce narrow-band phase modulation as well as amplitude modulation on the clock output (carrier). In the single-side band phase noise spectrum, the ripple-induced phase modulation appears as a phase spur level relative to the carrier (measured in dBc).

Power Supply Bypassing (continued)

For the LMK00304, power supply ripple rejection, or PSRR, was measured as the single-sideband phase spur level (in dBc) modulated onto the clock output when a ripple signal was injected onto the Vcco supply. The PSRR test setup is shown in Figure 39.

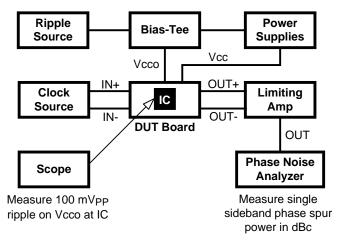


Figure 39. PSRR Test Setup

A signal generator was used to inject a sinusoidal signal onto the Vcco supply of the DUT board, and the peak-to-peak ripple amplitude was measured at the Vcco pins of the device. A limiting amplifier was used to remove amplitude modulation on the differential output clock and convert it to a single-ended signal for the phase noise analyzer. The phase spur level measurements were taken for clock frequencies of 156.25 MHz and 312.5 MHz under the following power supply ripple conditions:

- Ripple amplitude: 100 mVpp on Vcco = 2.5 V
- Ripple frequencies: 100 kHz, 1 MHz, and 10 MHz

Assuming no amplitude modulation effects and small index modulation, the peak-to-peak deterministic jitter (DJ) can be calculated using the measured single-sideband phase spur level (PSRR) as follows:

DJ (ps pk-pk) =
$$[(2 \times 10^{(PSRR / 20)}) / (\pi \times f_{CLK})] \times 10^{12}$$
 (12)

The "PSRR vs. Ripple Frequency" plots in *Typical Characteristics* show the ripple-induced phase spur levels for the differential output types at 156.25 MHz and 312.5 MHz. The LMK00304 exhibits very good and well-behaved PSRR characteristics across the ripple frequency range for all differential output types. The phase spur levels for LVPECL are below –64 dBc at 156.25 MHz and below –62 dBc at 312.5 MHz. Using Equation 12, these phase spur levels translate to Deterministic Jitter values of 2.57 ps pk-pk at 156.25 MHz and 1.62 ps pk-pk at 312.5 MHz. Testing has shown that the PSRR performance of the device improves for Vcco = 3.3 V under the same ripple amplitude and frequency conditions.

10.4 Thermal Management

Power dissipation in the LMK00304 device can be high enough to require attention to thermal management. For reliability and performance reasons the die temperature should be limited to a maximum of 125°C. That is, as an estimate, T_A (ambient temperature) plus device power dissipation times θ_{JA} should not exceed 125°C.

The package of the device has an exposed pad that provides the primary heat removal path as well as excellent electrical grounding to the printed circuit board. To maximize the removal of heat from the package a thermal land pattern including multiple vias to a ground plane must be incorporated on the PCB within the footprint of the package. The exposed pad must be soldered down to ensure adequate heat conduction out of the package.

Thermal Management (continued)

A recommended land and via pattern is shown in Figure 40. More information on soldering WQFN packages can be obtained at: http://www.ti.com/packaging.

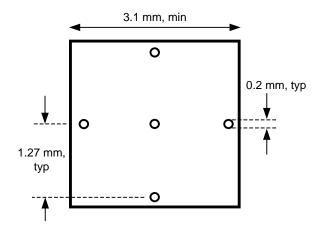


Figure 40. Recommended Land and Via Pattern

To minimize junction temperature it is recommended that a simple heat sink be built into the PCB (if the ground plane layer is not exposed). This is done by including a copper area of about 2 square inches on the opposite side of the PCB from the device. This copper area may be plated or solder coated to prevent corrosion but should not have conformal coating (if possible), which could provide thermal insulation. The vias shown in Figure 40 should connect these top and bottom copper layers and to the ground layer. These vias act as "heat pipes" to carry the thermal energy away from the device side of the board to where it can be more effectively dissipated.

10.4.1 Support for PCB Temperature up to 105°C

The LMK00304 can maintain a safe junction temperature below the recommended maximum value of 125°C even when operated on a PCB with a maximum board temperature (T_b) of 105°C. This is shown by the following example calculation, which assumes the worst-case IC power dissipation (P_{DEVICE}) from Power Dissipation Example: Worst-Case Dissipation and a 4-layer JEDEC test board with no airflow.

$$T_J = T_b + (\psi_{ib} \times P_{DEVICE})$$

where

- $T_b = 105$ °C
- $\psi_{ib} = 11.9^{\circ}C/W$

•
$$P_{DEVICE} = 561 \text{ mW}$$
 (13)

$$T_{\perp} = 111.7^{\circ}C$$
 (14)

11 デバイスおよびドキュメントのサポート

11.1 ドキュメントのサポート

11.1.1 関連資料

関連資料については、以下を参照してください。

『AN-912 データ転送の一般的なパラメータとその定義』(SNLA036)

11.2 ドキュメントの更新通知を受け取る方法

ドキュメントの更新についての通知を受け取るには、ti.comのデバイス製品フォルダを開いてください。右上の隅にある「通知を受け取る」をクリックして登録すると、変更されたすべての製品情報に関するダイジェストを毎週受け取れます。変更の詳細については、修正されたドキュメントに含まれている改訂履歴をご覧ください。

11.3 コミュニティ・リソース

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™オンライン・コミュニティ *TIのE2E(Engineer-to-Engineer)コミュニティ。*エンジニア間の共同作業を促進するために開設されたものです。e2e.ti.comでは、他のエンジニアに質問し、知識を共有し、アイディアを検討して、問題解決に役立てることができます。

設計サポート *TIの設計サポート* 役に立つE2Eフォーラムや、設計サポート・ツールをすばやく見つけることができます。技術サポート用の連絡先情報も参照できます。

11.4 商標

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

11.5 静電気放電に関する注意事項

これらのデバイスは、限定的なESD(静電破壊)保護機能を内蔵しています。保存時または取り扱い時は、MOSゲートに対する静電破壊を防止するために、リード線同士をショートさせておくか、デバイスを導電フォームに入れる必要があります。

11.6 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 メカニカル、パッケージ、および注文情報

以降のページには、メカニカル、パッケージ、および注文に関する情報が記載されています。この情報は、そのデバイスについて利用可能な最新のデータです。このデータは予告なく変更されることがあり、ドキュメントが改訂される場合もあります。本データシートのブラウザ版を使用されている場合は、画面左側の説明をご覧ください。

PACKAGE OPTION ADDENDUM

10-Dec-2020

PACKAGING INFORMATION

www.ti.com

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
							(6)				
LMK00304SQ/NOPB	ACTIVE	WQFN	RTV	32	1000	RoHS & Green	SN	Level-3-260C-168 HR	-40 to 85	K00304	Samples
LMK00304SQE/NOPB	ACTIVE	WQFN	RTV	32	250	RoHS & Green	SN	Level-3-260C-168 HR	-40 to 85	K00304	Samples
LMK00304SQX/NOPB	ACTIVE	WQFN	RTV	32	2500	RoHS & Green	SN	Level-3-260C-168 HR	-40 to 85	K00304	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

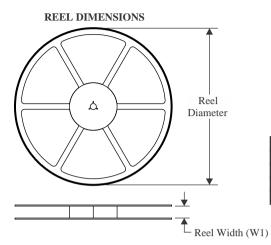
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

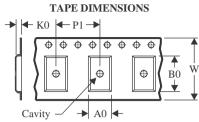
Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

PACKAGE OPTION ADDENDUM


10-Dec-2020


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

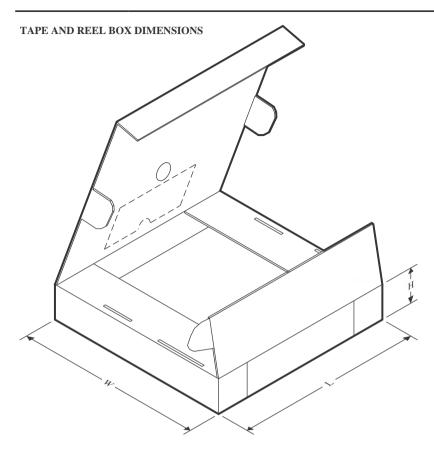
PACKAGE MATERIALS INFORMATION

www.ti.com 13-May-2024

TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

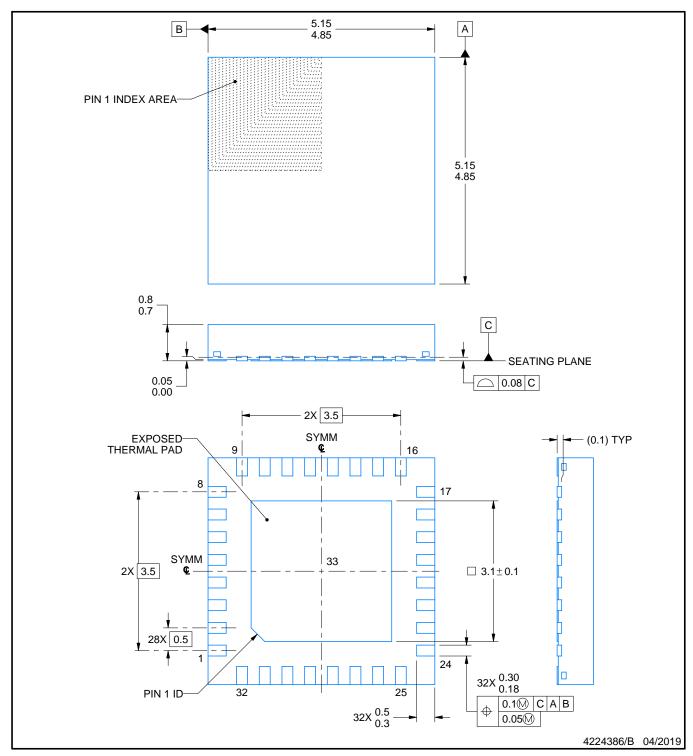
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LMK00304SQ/NOPB	WQFN	RTV	32	1000	178.0	12.4	5.3	5.3	1.3	8.0	12.0	Q1
LMK00304SQE/NOPB	WQFN	RTV	32	250	178.0	12.4	5.3	5.3	1.3	8.0	12.0	Q1
LMK00304SQX/NOPB	WQFN	RTV	32	2500	330.0	12.4	5.3	5.3	1.3	8.0	12.0	Q1

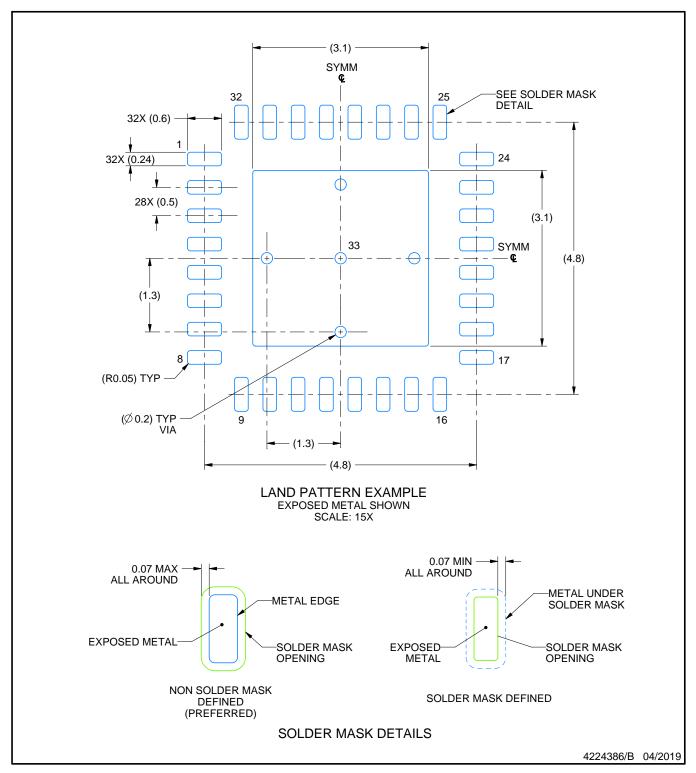
www.ti.com 13-May-2024



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LMK00304SQ/NOPB	WQFN	RTV	32	1000	208.0	191.0	35.0
LMK00304SQE/NOPB	WQFN	RTV	32	250	208.0	191.0	35.0
LMK00304SQX/NOPB	WQFN	RTV	32	2500	356.0	356.0	36.0

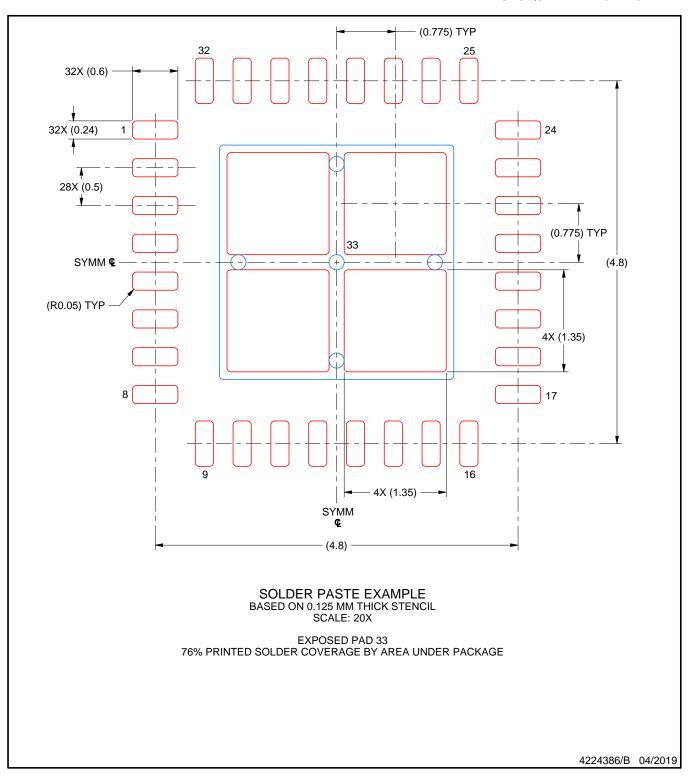
PLASTIC QUAD FLATPACK - NO LEAD



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

PLASTIC QUAD FLATPACK - NO LEAD



NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

重要なお知らせと免責事項

TI は、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス・デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。

これらのリソースは、TI 製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した TI 製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、その他のあら ゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている TI 製品を使用するアプリケーションの開発の目的でのみ、TI はその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。TI や第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、TI およびその代理人を完全に補償するものとし、TI は一切の責任を拒否します。

TIの製品は、TIの販売条件、または ti.com やかかる TI 製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。TI がこれらのリソースを提供することは、適用される TI の保証または他の保証の放棄の拡大や変更を意味するものではありません。

お客様がいかなる追加条項または代替条項を提案した場合でも、TIはそれらに異議を唱え、拒否します。

郵送先住所: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated